MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1eq Structured version   Visualization version   GIF version

Theorem lo1eq 15475
Description: Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1eq.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1eq.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
lo1eq.3 (𝜑𝐷 ∈ ℝ)
lo1eq.4 ((𝜑 ∧ (𝑥𝐴𝐷𝑥)) → 𝐵 = 𝐶)
Assertion
Ref Expression
lo1eq (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem lo1eq
StepHypRef Expression
1 lo1dm 15426 . . 3 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
2 eqid 2729 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 lo1eq.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
42, 3dmmptd 6627 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
54sseq1d 3967 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
61, 5imbitrid 244 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ))
7 lo1dm 15426 . . 3 ((𝑥𝐴𝐶) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐶) ⊆ ℝ)
8 eqid 2729 . . . . 5 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
9 lo1eq.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
108, 9dmmptd 6627 . . . 4 (𝜑 → dom (𝑥𝐴𝐶) = 𝐴)
1110sseq1d 3967 . . 3 (𝜑 → (dom (𝑥𝐴𝐶) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
127, 11imbitrid 244 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ))
13 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)))
14 elin 3919 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐷[,)+∞)))
1513, 14sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥𝐴𝑥 ∈ (𝐷[,)+∞)))
1615simpld 494 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥𝐴)
1715simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐷[,)+∞))
18 lo1eq.3 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℝ)
19 elicopnf 13348 . . . . . . . . . . . . . . . 16 (𝐷 ∈ ℝ → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷𝑥)))
2018, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷𝑥)))
2120biimpa 476 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐷[,)+∞)) → (𝑥 ∈ ℝ ∧ 𝐷𝑥))
2217, 21syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥 ∈ ℝ ∧ 𝐷𝑥))
2322simprd 495 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐷𝑥)
2416, 23jca 511 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥𝐴𝐷𝑥))
25 lo1eq.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝐷𝑥)) → 𝐵 = 𝐶)
2624, 25syldan 591 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐵 = 𝐶)
2726mpteq2dva 5185 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶))
28 inss1 4188 . . . . . . . . . 10 (𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴
29 resmpt 5988 . . . . . . . . . 10 ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵))
3028, 29ax-mp 5 . . . . . . . . 9 ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵)
31 resmpt 5988 . . . . . . . . . 10 ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶))
3228, 31ax-mp 5 . . . . . . . . 9 ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶)
3327, 30, 323eqtr4g 2789 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))))
34 resres 5943 . . . . . . . 8 (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞)))
35 resres 5943 . . . . . . . 8 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞)))
3633, 34, 353eqtr4g 2789 . . . . . . 7 (𝜑 → (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)))
37 ssid 3958 . . . . . . . 8 𝐴𝐴
38 resmpt 5988 . . . . . . . 8 (𝐴𝐴 → ((𝑥𝐴𝐵) ↾ 𝐴) = (𝑥𝐴𝐵))
39 reseq1 5924 . . . . . . . 8 (((𝑥𝐴𝐵) ↾ 𝐴) = (𝑥𝐴𝐵) → (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)))
4037, 38, 39mp2b 10 . . . . . . 7 (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞))
41 resmpt 5988 . . . . . . . 8 (𝐴𝐴 → ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
42 reseq1 5924 . . . . . . . 8 (((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶) → (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)))
4337, 41, 42mp2b 10 . . . . . . 7 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞))
4436, 40, 433eqtr3g 2787 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)))
4544eleq1d 2813 . . . . 5 (𝜑 → (((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
4645adantr 480 . . . 4 ((𝜑𝐴 ⊆ ℝ) → (((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
473fmpttd 7049 . . . . . 6 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
4847adantr 480 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴𝐵):𝐴⟶ℝ)
49 simpr 484 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
5018adantr 480 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → 𝐷 ∈ ℝ)
5148, 49, 50lo1resb 15471 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
529fmpttd 7049 . . . . . 6 (𝜑 → (𝑥𝐴𝐶):𝐴⟶ℝ)
5352adantr 480 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴𝐶):𝐴⟶ℝ)
5453, 49, 50lo1resb 15471 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
5546, 51, 543bitr4d 311 . . 3 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
5655ex 412 . 2 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1))))
576, 12, 56pm5.21ndd 379 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3902  wss 3903   class class class wbr 5092  cmpt 5173  dom cdm 5619  cres 5621  wf 6478  (class class class)co 7349  cr 11008  +∞cpnf 11146  cle 11150  [,)cico 13250  ≤𝑂(1)clo1 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-ico 13254  df-lo1 15398
This theorem is referenced by:  o1eq  15477
  Copyright terms: Public domain W3C validator