MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1eq Structured version   Visualization version   GIF version

Theorem lo1eq 15277
Description: Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1eq.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1eq.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
lo1eq.3 (𝜑𝐷 ∈ ℝ)
lo1eq.4 ((𝜑 ∧ (𝑥𝐴𝐷𝑥)) → 𝐵 = 𝐶)
Assertion
Ref Expression
lo1eq (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem lo1eq
StepHypRef Expression
1 lo1dm 15228 . . 3 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
2 eqid 2738 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 lo1eq.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
42, 3dmmptd 6578 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
54sseq1d 3952 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
61, 5syl5ib 243 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ))
7 lo1dm 15228 . . 3 ((𝑥𝐴𝐶) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐶) ⊆ ℝ)
8 eqid 2738 . . . . 5 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
9 lo1eq.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
108, 9dmmptd 6578 . . . 4 (𝜑 → dom (𝑥𝐴𝐶) = 𝐴)
1110sseq1d 3952 . . 3 (𝜑 → (dom (𝑥𝐴𝐶) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
127, 11syl5ib 243 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ))
13 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)))
14 elin 3903 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐷[,)+∞)))
1513, 14sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥𝐴𝑥 ∈ (𝐷[,)+∞)))
1615simpld 495 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥𝐴)
1715simprd 496 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝑥 ∈ (𝐷[,)+∞))
18 lo1eq.3 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℝ)
19 elicopnf 13177 . . . . . . . . . . . . . . . 16 (𝐷 ∈ ℝ → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷𝑥)))
2018, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (𝐷[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐷𝑥)))
2120biimpa 477 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐷[,)+∞)) → (𝑥 ∈ ℝ ∧ 𝐷𝑥))
2217, 21syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥 ∈ ℝ ∧ 𝐷𝑥))
2322simprd 496 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐷𝑥)
2416, 23jca 512 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → (𝑥𝐴𝐷𝑥))
25 lo1eq.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝐷𝑥)) → 𝐵 = 𝐶)
2624, 25syldan 591 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞))) → 𝐵 = 𝐶)
2726mpteq2dva 5174 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶))
28 inss1 4162 . . . . . . . . . 10 (𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴
29 resmpt 5945 . . . . . . . . . 10 ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵))
3028, 29ax-mp 5 . . . . . . . . 9 ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐵)
31 resmpt 5945 . . . . . . . . . 10 ((𝐴 ∩ (𝐷[,)+∞)) ⊆ 𝐴 → ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶))
3228, 31ax-mp 5 . . . . . . . . 9 ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))) = (𝑥 ∈ (𝐴 ∩ (𝐷[,)+∞)) ↦ 𝐶)
3327, 30, 323eqtr4g 2803 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞))) = ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞))))
34 resres 5904 . . . . . . . 8 (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐴 ∩ (𝐷[,)+∞)))
35 resres 5904 . . . . . . . 8 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐴 ∩ (𝐷[,)+∞)))
3633, 34, 353eqtr4g 2803 . . . . . . 7 (𝜑 → (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)))
37 ssid 3943 . . . . . . . 8 𝐴𝐴
38 resmpt 5945 . . . . . . . 8 (𝐴𝐴 → ((𝑥𝐴𝐵) ↾ 𝐴) = (𝑥𝐴𝐵))
39 reseq1 5885 . . . . . . . 8 (((𝑥𝐴𝐵) ↾ 𝐴) = (𝑥𝐴𝐵) → (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)))
4037, 38, 39mp2b 10 . . . . . . 7 (((𝑥𝐴𝐵) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞))
41 resmpt 5945 . . . . . . . 8 (𝐴𝐴 → ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
42 reseq1 5885 . . . . . . . 8 (((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶) → (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)))
4337, 41, 42mp2b 10 . . . . . . 7 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞))
4436, 40, 433eqtr3g 2801 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) = ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)))
4544eleq1d 2823 . . . . 5 (𝜑 → (((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
4645adantr 481 . . . 4 ((𝜑𝐴 ⊆ ℝ) → (((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
473fmpttd 6989 . . . . . 6 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
4847adantr 481 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴𝐵):𝐴⟶ℝ)
49 simpr 485 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
5018adantr 481 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → 𝐷 ∈ ℝ)
5148, 49, 50lo1resb 15273 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐵) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
529fmpttd 6989 . . . . . 6 (𝜑 → (𝑥𝐴𝐶):𝐴⟶ℝ)
5352adantr 481 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (𝑥𝐴𝐶):𝐴⟶ℝ)
5453, 49, 50lo1resb 15273 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐶) ∈ ≤𝑂(1) ↔ ((𝑥𝐴𝐶) ↾ (𝐷[,)+∞)) ∈ ≤𝑂(1)))
5546, 51, 543bitr4d 311 . . 3 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
5655ex 413 . 2 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1))))
576, 12, 56pm5.21ndd 381 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ (𝑥𝐴𝐶) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cin 3886  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  wf 6429  (class class class)co 7275  cr 10870  +∞cpnf 11006  cle 11010  [,)cico 13081  ≤𝑂(1)clo1 15196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085  df-lo1 15200
This theorem is referenced by:  o1eq  15279
  Copyright terms: Public domain W3C validator