MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mptrcl Structured version   Visualization version   GIF version

Theorem o1mptrcl 15596
Description: Reverse closure for an eventually bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1mptrcl.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
Assertion
Ref Expression
o1mptrcl ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem o1mptrcl
StepHypRef Expression
1 o1mptrcl.3 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
2 o1f 15502 . . . 4 ((𝑥𝐴𝐵) ∈ 𝑂(1) → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
4 o1add2.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6218 . . . . 5 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6675 . . 3 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
93, 8mpbid 232 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
109fvmptelcdm 7088 1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cmpt 5191  dom cdm 5641  wf 6510  cc 11073  𝑂(1)co1 15459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-pm 8805  df-o1 15463
This theorem is referenced by:  o1le  15626  fsumo1  15785  o1fsum  15786  o1cxp  26892  mulogsum  27450
  Copyright terms: Public domain W3C validator