MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mul2 Structured version   Visualization version   GIF version

Theorem lo1mul2 15517
Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ ๐‘‰)
o1add2.2 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ถ โˆˆ ๐‘‰)
lo1add.3 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ โ‰ค๐‘‚(1))
lo1add.4 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ถ) โˆˆ โ‰ค๐‘‚(1))
lo1mul.5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ 0 โ‰ค ๐ต)
Assertion
Ref Expression
lo1mul2 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (๐ถ ยท ๐ต)) โˆˆ โ‰ค๐‘‚(1))
Distinct variable groups:   ๐‘ฅ,๐ด   ๐œ‘,๐‘ฅ
Allowed substitution hints:   ๐ต(๐‘ฅ)   ๐ถ(๐‘ฅ)   ๐‘‰(๐‘ฅ)

Proof of Theorem lo1mul2
StepHypRef Expression
1 o1add2.2 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ถ โˆˆ ๐‘‰)
2 lo1add.4 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ถ) โˆˆ โ‰ค๐‘‚(1))
31, 2lo1mptrcl 15510 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ถ โˆˆ โ„)
43recnd 11188 . . . 4 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ถ โˆˆ โ„‚)
5 o1add2.1 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ ๐‘‰)
6 lo1add.3 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ โ‰ค๐‘‚(1))
75, 6lo1mptrcl 15510 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ โ„)
87recnd 11188 . . . 4 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ โ„‚)
94, 8mulcomd 11181 . . 3 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (๐ถ ยท ๐ต) = (๐ต ยท ๐ถ))
109mpteq2dva 5206 . 2 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (๐ถ ยท ๐ต)) = (๐‘ฅ โˆˆ ๐ด โ†ฆ (๐ต ยท ๐ถ)))
11 lo1mul.5 . . 3 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ 0 โ‰ค ๐ต)
125, 1, 6, 2, 11lo1mul 15516 . 2 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (๐ต ยท ๐ถ)) โˆˆ โ‰ค๐‘‚(1))
1310, 12eqeltrd 2834 1 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (๐ถ ยท ๐ต)) โˆˆ โ‰ค๐‘‚(1))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   โˆˆ wcel 2107   class class class wbr 5106   โ†ฆ cmpt 5189  (class class class)co 7358  0cc0 11056   ยท cmul 11061   โ‰ค cle 11195  โ‰ค๐‘‚(1)clo1 15375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8651  df-pm 8771  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-ico 13276  df-lo1 15379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator