MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mul2 Structured version   Visualization version   GIF version

Theorem lo1mul2 15613
Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ ๐‘‰)
o1add2.2 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ถ โˆˆ ๐‘‰)
lo1add.3 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ โ‰ค๐‘‚(1))
lo1add.4 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ถ) โˆˆ โ‰ค๐‘‚(1))
lo1mul.5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ 0 โ‰ค ๐ต)
Assertion
Ref Expression
lo1mul2 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (๐ถ ยท ๐ต)) โˆˆ โ‰ค๐‘‚(1))
Distinct variable groups:   ๐‘ฅ,๐ด   ๐œ‘,๐‘ฅ
Allowed substitution hints:   ๐ต(๐‘ฅ)   ๐ถ(๐‘ฅ)   ๐‘‰(๐‘ฅ)

Proof of Theorem lo1mul2
StepHypRef Expression
1 o1add2.2 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ถ โˆˆ ๐‘‰)
2 lo1add.4 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ถ) โˆˆ โ‰ค๐‘‚(1))
31, 2lo1mptrcl 15606 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ถ โˆˆ โ„)
43recnd 11280 . . . 4 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ถ โˆˆ โ„‚)
5 o1add2.1 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ ๐‘‰)
6 lo1add.3 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ โ‰ค๐‘‚(1))
75, 6lo1mptrcl 15606 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ โ„)
87recnd 11280 . . . 4 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ โ„‚)
94, 8mulcomd 11273 . . 3 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (๐ถ ยท ๐ต) = (๐ต ยท ๐ถ))
109mpteq2dva 5252 . 2 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (๐ถ ยท ๐ต)) = (๐‘ฅ โˆˆ ๐ด โ†ฆ (๐ต ยท ๐ถ)))
11 lo1mul.5 . . 3 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ 0 โ‰ค ๐ต)
125, 1, 6, 2, 11lo1mul 15612 . 2 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (๐ต ยท ๐ถ)) โˆˆ โ‰ค๐‘‚(1))
1310, 12eqeltrd 2829 1 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (๐ถ ยท ๐ต)) โˆˆ โ‰ค๐‘‚(1))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 394   โˆˆ wcel 2098   class class class wbr 5152   โ†ฆ cmpt 5235  (class class class)co 7426  0cc0 11146   ยท cmul 11151   โ‰ค cle 11287  โ‰ค๐‘‚(1)clo1 15471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8731  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-ico 13370  df-lo1 15475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator