| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lo1const | Structured version Visualization version GIF version | ||
| Description: A constant function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| lo1const | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ⊆ ℝ) | |
| 2 | simplr 768 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 3 | simpr 484 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
| 4 | leid 11230 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ 𝐵) | |
| 5 | 4 | ad2antlr 727 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑥)) → 𝐵 ≤ 𝐵) |
| 6 | 1, 2, 3, 3, 5 | ello1d 15448 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 ↦ cmpt 5176 ℝcr 11027 ≤ cle 11169 ≤𝑂(1)clo1 15412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-ico 13272 df-lo1 15416 |
| This theorem is referenced by: pntrlog2bndlem5 27508 |
| Copyright terms: Public domain | W3C validator |