| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lo1const | Structured version Visualization version GIF version | ||
| Description: A constant function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| lo1const | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ⊆ ℝ) | |
| 2 | simplr 768 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 3 | simpr 484 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
| 4 | leid 11336 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ 𝐵) | |
| 5 | 4 | ad2antlr 727 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑥)) → 𝐵 ≤ 𝐵) |
| 6 | 1, 2, 3, 3, 5 | ello1d 15544 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 ↦ cmpt 5206 ℝcr 11133 ≤ cle 11275 ≤𝑂(1)clo1 15508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-ico 13373 df-lo1 15512 |
| This theorem is referenced by: pntrlog2bndlem5 27549 |
| Copyright terms: Public domain | W3C validator |