MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1const Structured version   Visualization version   GIF version

Theorem lo1const 15534
Description: A constant function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1const ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem lo1const
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ⊆ ℝ)
2 simplr 768 . 2 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
3 simpr 484 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
4 leid 11215 . . 3 (𝐵 ∈ ℝ → 𝐵𝐵)
54ad2antlr 727 . 2 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐴𝐵𝑥)) → 𝐵𝐵)
61, 2, 3, 3, 5ello1d 15436 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wss 3897   class class class wbr 5093  cmpt 5174  cr 11011  cle 11153  ≤𝑂(1)clo1 15400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-pre-lttri 11086  ax-pre-lttrn 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-ico 13257  df-lo1 15404
This theorem is referenced by:  pntrlog2bndlem5  27525
  Copyright terms: Public domain W3C validator