Home | Metamath
Proof Explorer Theorem List (p. 156 of 460) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28853) |
Hilbert Space Explorer
(28854-30376) |
Users' Mathboxes
(30377-45962) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bpolydif 15501 | Calculate the difference between successive values of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 26-May-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℂ) → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))) | ||
Theorem | fsumkthpow 15502* | A closed-form expression for the sum of 𝐾-th powers. (Contributed by Scott Fenton, 16-May-2014.) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛↑𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1))) | ||
Theorem | bpoly2 15503 | The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6))) | ||
Theorem | bpoly3 15504 | The Bernoulli polynomials at three. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) | ||
Theorem | bpoly4 15505 | The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015.) |
⊢ (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / ;30))) | ||
Theorem | fsumcube 15506* | Express the sum of cubes in closed terms. (Contributed by Scott Fenton, 16-Jun-2015.) |
⊢ (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4)) | ||
Syntax | ce 15507 | Extend class notation to include the exponential function. |
class exp | ||
Syntax | ceu 15508 | Extend class notation to include Euler's constant e = 2.71828.... |
class e | ||
Syntax | csin 15509 | Extend class notation to include the sine function. |
class sin | ||
Syntax | ccos 15510 | Extend class notation to include the cosine function. |
class cos | ||
Syntax | ctan 15511 | Extend class notation to include the tangent function. |
class tan | ||
Syntax | cpi 15512 | Extend class notation to include the constant pi, π = 3.14159.... |
class π | ||
Definition | df-ef 15513* | Define the exponential function. Its value at the complex number 𝐴 is (exp‘𝐴) and is called the "exponential of 𝐴"; see efval 15525. (Contributed by NM, 14-Mar-2005.) |
⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) | ||
Definition | df-e 15514 | Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.) |
⊢ e = (exp‘1) | ||
Definition | df-sin 15515 | Define the sine function. (Contributed by NM, 14-Mar-2005.) |
⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | ||
Definition | df-cos 15516 | Define the cosine function. (Contributed by NM, 14-Mar-2005.) |
⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | ||
Definition | df-tan 15517 | Define the tangent function. We define it this way for cmpt 5110, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario Carneiro, 14-Mar-2014.) |
⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) | ||
Definition | df-pi 15518 | Define the constant pi, π = 3.14159..., which is the smallest positive number whose sine is zero. Definition of π in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.) |
⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) | ||
Theorem | eftcl 15519 | Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℂ) | ||
Theorem | reeftcl 15520 | The terms of the series expansion of the exponential function at a real number are real. (Contributed by Paul Chapman, 15-Jan-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℝ) | ||
Theorem | eftabs 15521 | The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (abs‘((𝐴↑𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾))) | ||
Theorem | eftval 15522* | The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) | ||
Theorem | efcllem 15523* | Lemma for efcl 15528. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 15331 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Proof shortened by AV, 9-Jul-2022.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) | ||
Theorem | ef0lem 15524* | The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) | ||
Theorem | efval 15525* | Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) | ||
Theorem | esum 15526 | Value of Euler's constant e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006.) |
⊢ e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘)) | ||
Theorem | eff 15527 | Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
⊢ exp:ℂ⟶ℂ | ||
Theorem | efcl 15528 | Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | ||
Theorem | efval2 15529* | Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) | ||
Theorem | efcvg 15530* | The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) | ||
Theorem | efcvgfsum 15531* | Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) | ||
Theorem | reefcl 15532 | The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ) | ||
Theorem | reefcld 15533 | The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) | ||
Theorem | ere 15534 | Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.) |
⊢ e ∈ ℝ | ||
Theorem | ege2le3 15535 | Lemma for egt2lt3 15651. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤ 3) | ||
Theorem | ef0 15536 | Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ (exp‘0) = 1 | ||
Theorem | efcj 15537 | The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
⊢ (𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) | ||
Theorem | efaddlem 15538* | Lemma for efadd 15539 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) | ||
Theorem | efadd 15539 | Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) | ||
Theorem | fprodefsum 15540* | Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴)) | ||
Theorem | efcan 15541 | Cancellation law for exponential function. Equation 27 of [Rudin] p. 164. (Contributed by NM, 13-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1) | ||
Theorem | efne0 15542 | The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) | ||
Theorem | efneg 15543 | The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴))) | ||
Theorem | eff2 15544 | The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) |
⊢ exp:ℂ⟶(ℂ ∖ {0}) | ||
Theorem | efsub 15545 | Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) | ||
Theorem | efexp 15546 | The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁)) | ||
Theorem | efzval 15547 | Value of the exponential function for integers. Special case of efval 15525. Equation 30 of [Rudin] p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
⊢ (𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁)) | ||
Theorem | efgt0 15548 | The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ ℝ → 0 < (exp‘𝐴)) | ||
Theorem | rpefcl 15549 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ+) | ||
Theorem | rpefcld 15550 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ+) | ||
Theorem | eftlcvg 15551* | The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
Theorem | eftlcl 15552* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) | ||
Theorem | reeftlcl 15553* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) | ||
Theorem | eftlub 15554* | An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) ≤ 1) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) | ||
Theorem | efsep 15555* | Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) & ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) ⇒ ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) | ||
Theorem | effsumlt 15556* | The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) | ||
Theorem | eft0val 15557 | The value of the first term of the series expansion of the exponential function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | ||
Theorem | ef4p 15558* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
Theorem | efgt1p2 15559 | The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) | ||
Theorem | efgt1p 15560 | The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) | ||
Theorem | efgt1 15561 | The exponential of a positive real number is greater than 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ ℝ+ → 1 < (exp‘𝐴)) | ||
Theorem | eflt 15562 | The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) | ||
Theorem | efle 15563 | The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) | ||
Theorem | reef11 15564 | The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008.) (Revised by Mario Carneiro, 11-Mar-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | reeff1 15565 | The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | ||
Theorem | eflegeo 15566 | The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) | ||
Theorem | sinval 15567 | Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | ||
Theorem | cosval 15568 | Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | ||
Theorem | sinf 15569 | Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ sin:ℂ⟶ℂ | ||
Theorem | cosf 15570 | Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ cos:ℂ⟶ℂ | ||
Theorem | sincl 15571 | Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | ||
Theorem | coscl 15572 | Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | ||
Theorem | tanval 15573 | Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | ||
Theorem | tancl 15574 | The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ) | ||
Theorem | sincld 15575 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) | ||
Theorem | coscld 15576 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℂ) | ||
Theorem | tancld 15577 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) | ||
Theorem | tanval2 15578 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) | ||
Theorem | tanval3 15579 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1)))) | ||
Theorem | resinval 15580 | The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) | ||
Theorem | recosval 15581 | The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) | ||
Theorem | efi4p 15582* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
Theorem | resin4p 15583* | Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
Theorem | recos4p 15584* | Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
Theorem | resincl 15585 | The sine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | ||
Theorem | recoscl 15586 | The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | ||
Theorem | retancl 15587 | The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℝ) | ||
Theorem | resincld 15588 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) | ||
Theorem | recoscld 15589 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) | ||
Theorem | retancld 15590 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) | ||
Theorem | sinneg 15591 | The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | ||
Theorem | cosneg 15592 | The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | ||
Theorem | tanneg 15593 | The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴)) | ||
Theorem | sin0 15594 | Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.) |
⊢ (sin‘0) = 0 | ||
Theorem | cos0 15595 | Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.) |
⊢ (cos‘0) = 1 | ||
Theorem | tan0 15596 | The value of the tangent function at zero is zero. (Contributed by David A. Wheeler, 16-Mar-2014.) |
⊢ (tan‘0) = 0 | ||
Theorem | efival 15597 | The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | ||
Theorem | efmival 15598 | The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴)))) | ||
Theorem | sinhval 15599 | Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) | ||
Theorem | coshval 15600 | Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |