| Metamath
Proof Explorer Theorem List (p. 156 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | climcn1 15501* | Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐹‘𝑧) ∈ ℂ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐵 ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐹‘𝐴)) | ||
| Theorem | climcn2 15502* | Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐶 ∧ 𝑣 ∈ 𝐷)) → (𝑢𝐹𝑣) ∈ ℂ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ⇝ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ 𝐶 ∀𝑣 ∈ 𝐷 (((abs‘(𝑢 − 𝐴)) < 𝑦 ∧ (abs‘(𝑣 − 𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾‘𝑘) = ((𝐺‘𝑘)𝐹(𝐻‘𝑘))) ⇒ ⊢ (𝜑 → 𝐾 ⇝ (𝐴𝐹𝐵)) | ||
| Theorem | addcn2 15503* | Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn 23143 and df-cncf 24799 are not yet available to us. See addcn 24782 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)) | ||
| Theorem | subcn2 15504* | Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 − 𝑣) − (𝐵 − 𝐶))) < 𝐴)) | ||
| Theorem | mulcn2 15505* | Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)) | ||
| Theorem | reccn2 15506* | The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) (Revised by Mario Carneiro, 22-Sep-2014.) |
| ⊢ 𝑇 = (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ⇒ ⊢ ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) | ||
| Theorem | cn1lem 15507* | A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
| ⊢ 𝐹:ℂ⟶ℂ & ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) | ||
| Theorem | abscn2 15508* | The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐴))) < 𝑥)) | ||
| Theorem | cjcn2 15509* | The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐴))) < 𝑥)) | ||
| Theorem | recn2 15510* | The real part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))) < 𝑥)) | ||
| Theorem | imcn2 15511* | The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥)) | ||
| Theorem | climcn1lem 15512* | The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ 𝐻:ℂ⟶ℂ & ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) | ||
| Theorem | climabs 15513* | Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (abs‘𝐴)) | ||
| Theorem | climcj 15514* | Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (∗‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (∗‘𝐴)) | ||
| Theorem | climre 15515* | Limit of the real part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (ℜ‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (ℜ‘𝐴)) | ||
| Theorem | climim 15516* | Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (ℑ‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (ℑ‘𝐴)) | ||
| Theorem | rlimmptrcl 15517* | Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | ||
| Theorem | rlimabs 15518* | Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (abs‘𝐵)) ⇝𝑟 (abs‘𝐶)) | ||
| Theorem | rlimcj 15519* | Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (∗‘𝐵)) ⇝𝑟 (∗‘𝐶)) | ||
| Theorem | rlimre 15520* | Limit of the real part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (ℜ‘𝐵)) ⇝𝑟 (ℜ‘𝐶)) | ||
| Theorem | rlimim 15521* | Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (ℑ‘𝐵)) ⇝𝑟 (ℑ‘𝐶)) | ||
| Theorem | o1of2 15522* | Show that a binary operation preserves eventual boundedness. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ) & ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ) & ⊢ (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀)) ⇒ ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f 𝑅𝐺) ∈ 𝑂(1)) | ||
| Theorem | o1add 15523 | The sum of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
| ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f + 𝐺) ∈ 𝑂(1)) | ||
| Theorem | o1mul 15524 | The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
| ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f · 𝐺) ∈ 𝑂(1)) | ||
| Theorem | o1sub 15525 | The difference of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
| ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f − 𝐺) ∈ 𝑂(1)) | ||
| Theorem | rlimo1 15526 | Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ 𝑂(1)) | ||
| Theorem | rlimdmo1 15527 | A convergent function is eventually bounded. (Contributed by Mario Carneiro, 12-May-2016.) |
| ⊢ (𝐹 ∈ dom ⇝𝑟 → 𝐹 ∈ 𝑂(1)) | ||
| Theorem | o1rlimmul 15528 | The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014.) |
| ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0) → (𝐹 ∘f · 𝐺) ⇝𝑟 0) | ||
| Theorem | o1const 15529* | A constant function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) | ||
| Theorem | lo1const 15530* | A constant function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) | ||
| Theorem | lo1mptrcl 15531* | Reverse closure for an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | ||
| Theorem | o1mptrcl 15532* | Reverse closure for an eventually bounded function. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | ||
| Theorem | o1add2 15533* | The sum of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝑂(1)) | ||
| Theorem | o1mul2 15534* | The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∈ 𝑂(1)) | ||
| Theorem | o1sub2 15535* | The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) | ||
| Theorem | lo1add 15536* | The sum of two eventually upper bounded functions is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ ≤𝑂(1)) | ||
| Theorem | lo1mul 15537* | The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1)) | ||
| Theorem | lo1mul2 15538* | The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ ≤𝑂(1)) | ||
| Theorem | o1dif 15539* | If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) | ||
| Theorem | lo1sub 15540* | The difference of an eventually upper bounded function and an eventually bounded function is eventually upper bounded. The "correct" sharp result here takes the second function to be eventually lower bounded instead of just bounded, but our notation for this is simply (𝑥 ∈ 𝐴 ↦ -𝐶) ∈ ≤𝑂(1), so it is just a special case of lo1add 15536. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ ≤𝑂(1)) | ||
| Theorem | climadd 15541* | Limit of the sum of two converging sequences. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by NM, 24-Sep-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) | ||
| Theorem | climmul 15542* | Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) | ||
| Theorem | climsub 15543* | Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 − 𝐵)) | ||
| Theorem | climaddc1 15544* | Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) + 𝐶)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐴 + 𝐶)) | ||
| Theorem | climaddc2 15545* | Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 + (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 + 𝐴)) | ||
| Theorem | climmulc2 15546* | Limit of a sequence multiplied by a constant 𝐶. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 · 𝐴)) | ||
| Theorem | climsubc1 15547* | Limit of a constant 𝐶 subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) − 𝐶)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐴 − 𝐶)) | ||
| Theorem | climsubc2 15548* | Limit of a constant 𝐶 minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 − (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 − 𝐴)) | ||
| Theorem | climle 15549* | Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | climsqz 15550* | Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | ||
| Theorem | climsqz2 15551* | Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | ||
| Theorem | rlimadd 15552* | Limit of the sum of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ⇝𝑟 (𝐷 + 𝐸)) | ||
| Theorem | rlimsub 15553* | Limit of the difference of two converging functions. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⇝𝑟 (𝐷 − 𝐸)) | ||
| Theorem | rlimmul 15554* | Limit of the product of two converging functions. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ⇝𝑟 (𝐷 · 𝐸)) | ||
| Theorem | rlimdiv 15555* | Limit of the quotient of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) & ⊢ (𝜑 → 𝐸 ≠ 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸)) | ||
| Theorem | rlimneg 15556* | Limit of the negative of a sequence. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -𝐵) ⇝𝑟 -𝐶) | ||
| Theorem | rlimle 15557* | Comparison of the limits of two sequences. (Contributed by Mario Carneiro, 10-May-2016.) |
| ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐷 ≤ 𝐸) | ||
| Theorem | rlimsqzlem 15558* | Lemma for rlimsqz 15559 and rlimsqz2 15560. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.) |
| ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → (abs‘(𝐶 − 𝐸)) ≤ (abs‘(𝐵 − 𝐷))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) | ||
| Theorem | rlimsqz 15559* | Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.) |
| ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐵 ≤ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) | ||
| Theorem | rlimsqz2 15560* | Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 3-Feb-2014.) (Revised by Mario Carneiro, 20-May-2016.) |
| ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐶 ≤ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐷 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) | ||
| Theorem | lo1le 15561* | Transfer eventual upper boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) | ||
| Theorem | o1le 15562* | Transfer eventual boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 25-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
| ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → (abs‘𝐶) ≤ (abs‘𝐵)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) | ||
| Theorem | rlimno1 15563* | A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ¬ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) | ||
| Theorem | clim2ser 15564* | The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) ⇒ ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁))) | ||
| Theorem | clim2ser2 15565* | The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁))) | ||
| Theorem | iserex 15566* | An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) | ||
| Theorem | isermulc2 15567* | Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Mario Carneiro, 1-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴)) | ||
| Theorem | climlec2 15568* | Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | iserle 15569* | Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007.) (Revised by Mario Carneiro, 3-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | iserge0 15570* | The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) | ||
| Theorem | climub 15571* | The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) | ||
| Theorem | climserle 15572* | The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴) | ||
| Theorem | isershft 15573 | Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) | ||
| Theorem | isercolllem1 15574* | Lemma for isercoll 15577. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺:ℕ⟶𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) ⇒ ⊢ ((𝜑 ∧ 𝑆 ⊆ ℕ) → (𝐺 ↾ 𝑆) Isom < , < (𝑆, (𝐺 “ 𝑆))) | ||
| Theorem | isercolllem2 15575* | Lemma for isercoll 15577. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺:ℕ⟶𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (1...(♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) = (◡𝐺 “ (𝑀...𝑁))) | ||
| Theorem | isercolllem3 15576* | Lemma for isercoll 15577. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺:ℕ⟶𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) | ||
| Theorem | isercoll 15577* | Rearrange an infinite series by spacing out the terms using an order isomorphism. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺:ℕ⟶𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq1( + , 𝐻) ⇝ 𝐴 ↔ seq𝑀( + , 𝐹) ⇝ 𝐴)) | ||
| Theorem | isercoll2 15578* | Generalize isercoll 15577 so that both sequences have arbitrary starting point. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐺:𝑍⟶𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑊 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑊) → (𝐹‘𝑛) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐻) ⇝ 𝐴 ↔ seq𝑁( + , 𝐹) ⇝ 𝐴)) | ||
| Theorem | climsup 15579* | A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of [Gleason] p. 180. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) | ||
| Theorem | climcau 15580* | A converging sequence of complex numbers is a Cauchy sequence. Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) | ||
| Theorem | climbdd 15581* | A converging sequence of complex numbers is bounded. (Contributed by Mario Carneiro, 9-Jul-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) | ||
| Theorem | caucvgrlem 15582* | Lemma for caurcvgr 15583. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by AV, 12-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)))) | ||
| Theorem | caurcvgr 15583* | A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016.) (Revised by AV, 12-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) ⇒ ⊢ (𝜑 → 𝐹 ⇝𝑟 (lim sup‘𝐹)) | ||
| Theorem | caucvgrlem2 15584* | Lemma for caucvgr 15585. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Mario Carneiro, 8-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) & ⊢ 𝐻:ℂ⟶ℝ & ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ⇒ ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (𝐻‘(𝐹‘𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(𝐻 ∘ 𝐹))) | ||
| Theorem | caucvgr 15585* | A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑟 ) | ||
| Theorem | caurcvg 15586* | A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by AV, 12-Sep-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) ⇒ ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) | ||
| Theorem | caurcvg2 15587* | A Cauchy sequence of real numbers converges, existence version. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 7-Sep-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | ||
| Theorem | caucvg 15588* | A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | ||
| Theorem | caucvgb 15589* | A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Mario Carneiro, 15-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) | ||
| Theorem | serf0 15590* | If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) | ||
| Theorem | iseraltlem1 15591* | Lemma for iseralt 15594. A decreasing sequence with limit zero consists of positive terms. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) & ⊢ (𝜑 → 𝐺 ⇝ 0) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍) → 0 ≤ (𝐺‘𝑁)) | ||
| Theorem | iseraltlem2 15592* | Lemma for iseralt 15594. The terms of an alternating series form a chain of inequalities in alternate terms, so that for example 𝑆(1) ≤ 𝑆(3) ≤ 𝑆(5) ≤ ... and ... ≤ 𝑆(4) ≤ 𝑆(2) ≤ 𝑆(0) (assuming 𝑀 = 0 so that these terms are defined). (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) & ⊢ (𝜑 → 𝐺 ⇝ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((-1↑𝑘) · (𝐺‘𝑘))) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) | ||
| Theorem | iseraltlem3 15593* | Lemma for iseralt 15594. From iseraltlem2 15592, we have (-1↑𝑛) · 𝑆(𝑛 + 2𝑘) ≤ (-1↑𝑛) · 𝑆(𝑛) and (-1↑𝑛) · 𝑆(𝑛 + 1) ≤ (-1↑𝑛) · 𝑆(𝑛 + 2𝑘 + 1), and we also have (-1↑𝑛) · 𝑆(𝑛 + 1) = (-1↑𝑛) · 𝑆(𝑛) − 𝐺(𝑛 + 1) for each 𝑛 by the definition of the partial sum 𝑆, so combining the inequalities we get (-1↑𝑛) · 𝑆(𝑛) − 𝐺(𝑛 + 1) = (-1↑𝑛) · 𝑆(𝑛 + 1) ≤ (-1↑𝑛) · 𝑆(𝑛 + 2𝑘 + 1) = (-1↑𝑛) · 𝑆(𝑛 + 2𝑘) − 𝐺(𝑛 + 2𝑘 + 1) ≤ (-1↑𝑛) · 𝑆(𝑛 + 2𝑘) ≤ (-1↑𝑛) · 𝑆(𝑛) ≤ (-1↑𝑛) · 𝑆(𝑛) + 𝐺(𝑛 + 1), so ∣ (-1↑𝑛) · 𝑆(𝑛 + 2𝑘 + 1) − (-1↑𝑛) · 𝑆(𝑛) ∣ = ∣ 𝑆(𝑛 + 2𝑘 + 1) − 𝑆(𝑛) ∣ ≤ 𝐺(𝑛 + 1) and ∣ (-1↑𝑛) · 𝑆(𝑛 + 2𝑘) − (-1↑𝑛) · 𝑆(𝑛) ∣ = ∣ 𝑆(𝑛 + 2𝑘) − 𝑆(𝑛) ∣ ≤ 𝐺(𝑛 + 1). Thus, both even and odd partial sums are Cauchy if 𝐺 converges to 0. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) & ⊢ (𝜑 → 𝐺 ⇝ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((-1↑𝑘) · (𝐺‘𝑘))) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ 𝑍 ∧ 𝐾 ∈ ℕ0) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝐾)) + 1)) − (seq𝑀( + , 𝐹)‘𝑁))) ≤ (𝐺‘(𝑁 + 1)))) | ||
| Theorem | iseralt 15594* | The alternating series test. If 𝐺(𝑘) is a decreasing sequence that converges to 0, then Σ𝑘 ∈ 𝑍(-1↑𝑘) · 𝐺(𝑘) is a convergent series. (Note that the first term is positive if 𝑀 is even, and negative if 𝑀 is odd. If the parity of your series does not match up with this, you will need to post-compose the series with multiplication by -1 using isermulc2 15567.) (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) & ⊢ (𝜑 → 𝐺 ⇝ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((-1↑𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
| Syntax | csu 15595 | Extend class notation to include finite and infinite summations. (An underscore was added to the ASCII token in order to facilitate set.mm text searches, since "sum" is a commonly used word in comments.) |
| class Σ𝑘 ∈ 𝐴 𝐵 | ||
| Definition | df-sum 15596* | Define the sum of a series with an index set of integers 𝐴. The variable 𝑘 is normally a free variable in 𝐵, i.e., 𝐵 can be thought of as 𝐵(𝑘). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers) by summo 15626. Examples: Σ𝑘 ∈ {1, 2, 4}𝑘 means 1 + 2 + 4 = 7, and Σ𝑘 ∈ ℕ(1 / (2↑𝑘)) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 15791). (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) | ||
| Theorem | sumex 15597 | A sum is a set. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| ⊢ Σ𝑘 ∈ 𝐴 𝐵 ∈ V | ||
| Theorem | sumeq1 15598 | Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | ||
| Theorem | nfsum1 15599 | Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.) |
| ⊢ Ⅎ𝑘𝐴 ⇒ ⊢ Ⅎ𝑘Σ𝑘 ∈ 𝐴 𝐵 | ||
| Theorem | nfsum 15600* | Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in Σ𝑘 ∈ 𝐴𝐵. Version of nfsum 15600 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by NM, 11-Dec-2005.) (Revised by GG, 24-Feb-2024.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥Σ𝑘 ∈ 𝐴 𝐵 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |