![]() |
Metamath
Proof Explorer Theorem List (p. 156 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30158) |
![]() (30159-31681) |
![]() (31682-47805) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rlimres2 15501* | The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝𝑟 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) | ||
Theorem | lo1res2 15502* | The restriction of a function is eventually bounded if the original is. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ ≤𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) | ||
Theorem | o1res2 15503* | The restriction of a function is eventually bounded if the original is. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) | ||
Theorem | lo1resb 15504 | The restriction of a function to an unbounded-above interval is eventually upper bounded iff the original is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1))) | ||
Theorem | rlimresb 15505 | The restriction of a function to an unbounded-above interval converges iff the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹 ⇝𝑟 𝐶 ↔ (𝐹 ↾ (𝐵[,)+∞)) ⇝𝑟 𝐶)) | ||
Theorem | o1resb 15506 | The restriction of a function to an unbounded-above interval is eventually bounded iff the original is eventually bounded. (Contributed by Mario Carneiro, 9-Apr-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ 𝑂(1))) | ||
Theorem | climeq 15507* | Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | ||
Theorem | lo1eq 15508* | Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥)) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1))) | ||
Theorem | rlimeq 15509* | Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 16-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥)) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐸 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸)) | ||
Theorem | o1eq 15510* | Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥)) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) | ||
Theorem | climmpt 15511* | Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | ||
Theorem | 2clim 15512* | If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < 𝑥) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | ||
Theorem | climmpt2 15513* | Relate an integer limit on a not-quite-function to a real limit. (Contributed by Mario Carneiro, 17-Sep-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐴)) | ||
Theorem | climshftlem 15514 | A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝑀 ∈ ℤ → (𝐹 ⇝ 𝐴 → (𝐹 shift 𝑀) ⇝ 𝐴)) | ||
Theorem | climres 15515 | A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
Theorem | climshft 15516 | A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
Theorem | serclim0 15517 | The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.) |
⊢ (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ≥‘𝑀) × {0})) ⇝ 0) | ||
Theorem | rlimcld2 15518* | If 𝐷 is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in 𝐷, then the limit of the sequence also lies in 𝐷. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) & ⊢ (𝜑 → 𝐷 ⊆ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ+) & ⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ 𝐷)) ∧ 𝑧 ∈ 𝐷) → 𝑅 ≤ (abs‘(𝑧 − 𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐷) | ||
Theorem | rlimrege0 15519* | The limit of a sequence of complex numbers with nonnegative real part has nonnegative real part. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (ℜ‘𝐵)) ⇒ ⊢ (𝜑 → 0 ≤ (ℜ‘𝐶)) | ||
Theorem | rlimrecl 15520* | The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016.) |
⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐶 ∈ ℝ) | ||
Theorem | rlimge0 15521* | The limit of a sequence of nonnegative reals is nonnegative. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ 𝐶) | ||
Theorem | climshft2 15522* | A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | ||
Theorem | climrecl 15523* | The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.) (Proof shortened by Mario Carneiro, 10-May-2016.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | climge0 15524* | A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.) (Proof shortened by Mario Carneiro, 10-May-2016.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) | ||
Theorem | climabs0 15525* | Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0)) | ||
Theorem | o1co 15526* | Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐹 ∈ 𝑂(1)) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ (𝐺‘𝑦))) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ 𝑂(1)) | ||
Theorem | o1compt 15527* | Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐹 ∈ 𝑂(1)) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶)) ⇒ ⊢ (𝜑 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ 𝐶)) ∈ 𝑂(1)) | ||
Theorem | rlimcn1 15528* | Image of a limit under a continuous map. (Contributed by Mario Carneiro, 17-Sep-2014.) |
⊢ (𝜑 → 𝐺:𝐴⟶𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝𝑟 𝐶) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐶))) < 𝑥)) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝𝑟 (𝐹‘𝐶)) | ||
Theorem | rlimcn1b 15529* | Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐶))) < 𝑥)) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ⇝𝑟 (𝐹‘𝐶)) | ||
Theorem | rlimcn3 15530* | Image of a limit under a continuous map, two-arg version. Originally a subproof of rlimcn2 15531. (Contributed by SN, 27-Sep-2024.) |
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐵𝐹𝐶) ∈ ℂ) & ⊢ (𝜑 → (𝑅𝐹𝑆) ∈ ℂ) & ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝑅) & ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((abs‘(𝑢 − 𝑅)) < 𝑟 ∧ (abs‘(𝑣 − 𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) ⇒ ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆)) | ||
Theorem | rlimcn2 15531* | Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝑅) & ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝑆) & ⊢ (𝜑 → 𝐹:(𝑋 × 𝑌)⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((abs‘(𝑢 − 𝑅)) < 𝑟 ∧ (abs‘(𝑣 − 𝑆)) < 𝑠) → (abs‘((𝑢𝐹𝑣) − (𝑅𝐹𝑆))) < 𝑥)) ⇒ ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ (𝐵𝐹𝐶)) ⇝𝑟 (𝑅𝐹𝑆)) | ||
Theorem | climcn1 15532* | Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐹‘𝑧) ∈ ℂ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐵 ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐹‘𝐴)) | ||
Theorem | climcn2 15533* | Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐶 ∧ 𝑣 ∈ 𝐷)) → (𝑢𝐹𝑣) ∈ ℂ) & ⊢ (𝜑 → 𝐺 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ⇝ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ 𝐶 ∀𝑣 ∈ 𝐷 (((abs‘(𝑢 − 𝐴)) < 𝑦 ∧ (abs‘(𝑣 − 𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾‘𝑘) = ((𝐺‘𝑘)𝐹(𝐻‘𝑘))) ⇒ ⊢ (𝜑 → 𝐾 ⇝ (𝐴𝐹𝐵)) | ||
Theorem | addcn2 15534* | Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn 22722 and df-cncf 24385 are not yet available to us. See addcn 24372 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)) | ||
Theorem | subcn2 15535* | Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 − 𝑣) − (𝐵 − 𝐶))) < 𝐴)) | ||
Theorem | mulcn2 15536* | Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐵)) < 𝑦 ∧ (abs‘(𝑣 − 𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)) | ||
Theorem | reccn2 15537* | The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) (Revised by Mario Carneiro, 22-Sep-2014.) |
⊢ 𝑇 = (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ⇒ ⊢ ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) | ||
Theorem | cn1lem 15538* | A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
⊢ 𝐹:ℂ⟶ℂ & ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) | ||
Theorem | abscn2 15539* | The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐴))) < 𝑥)) | ||
Theorem | cjcn2 15540* | The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐴))) < 𝑥)) | ||
Theorem | recn2 15541* | The real part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))) < 𝑥)) | ||
Theorem | imcn2 15542* | The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥)) | ||
Theorem | climcn1lem 15543* | The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ 𝐻:ℂ⟶ℂ & ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) | ||
Theorem | climabs 15544* | Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (abs‘𝐴)) | ||
Theorem | climcj 15545* | Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (∗‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (∗‘𝐴)) | ||
Theorem | climre 15546* | Limit of the real part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (ℜ‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (ℜ‘𝐴)) | ||
Theorem | climim 15547* | Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (ℑ‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (ℑ‘𝐴)) | ||
Theorem | rlimmptrcl 15548* | Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | ||
Theorem | rlimabs 15549* | Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (abs‘𝐵)) ⇝𝑟 (abs‘𝐶)) | ||
Theorem | rlimcj 15550* | Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (∗‘𝐵)) ⇝𝑟 (∗‘𝐶)) | ||
Theorem | rlimre 15551* | Limit of the real part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (ℜ‘𝐵)) ⇝𝑟 (ℜ‘𝐶)) | ||
Theorem | rlimim 15552* | Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (ℑ‘𝐵)) ⇝𝑟 (ℑ‘𝐶)) | ||
Theorem | o1of2 15553* | Show that a binary operation preserves eventual boundedness. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ) & ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ) & ⊢ (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀)) ⇒ ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f 𝑅𝐺) ∈ 𝑂(1)) | ||
Theorem | o1add 15554 | The sum of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f + 𝐺) ∈ 𝑂(1)) | ||
Theorem | o1mul 15555 | The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f · 𝐺) ∈ 𝑂(1)) | ||
Theorem | o1sub 15556 | The difference of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹 ∘f − 𝐺) ∈ 𝑂(1)) | ||
Theorem | rlimo1 15557 | Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014.) |
⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ 𝑂(1)) | ||
Theorem | rlimdmo1 15558 | A convergent function is eventually bounded. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ (𝐹 ∈ dom ⇝𝑟 → 𝐹 ∈ 𝑂(1)) | ||
Theorem | o1rlimmul 15559 | The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014.) |
⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0) → (𝐹 ∘f · 𝐺) ⇝𝑟 0) | ||
Theorem | o1const 15560* | A constant function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) | ||
Theorem | lo1const 15561* | A constant function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) | ||
Theorem | lo1mptrcl 15562* | Reverse closure for an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | ||
Theorem | o1mptrcl 15563* | Reverse closure for an eventually bounded function. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | ||
Theorem | o1add2 15564* | The sum of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝑂(1)) | ||
Theorem | o1mul2 15565* | The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∈ 𝑂(1)) | ||
Theorem | o1sub2 15566* | The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) | ||
Theorem | lo1add 15567* | The sum of two eventually upper bounded functions is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ ≤𝑂(1)) | ||
Theorem | lo1mul 15568* | The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∈ ≤𝑂(1)) | ||
Theorem | lo1mul2 15569* | The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ ≤𝑂(1)) | ||
Theorem | o1dif 15570* | If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) | ||
Theorem | lo1sub 15571* | The difference of an eventually upper bounded function and an eventually bounded function is eventually upper bounded. The "correct" sharp result here takes the second function to be eventually lower bounded instead of just bounded, but our notation for this is simply (𝑥 ∈ 𝐴 ↦ -𝐶) ∈ ≤𝑂(1), so it is just a special case of lo1add 15567. (Contributed by Mario Carneiro, 31-May-2016.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ ≤𝑂(1)) | ||
Theorem | climadd 15572* | Limit of the sum of two converging sequences. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by NM, 24-Sep-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) | ||
Theorem | climmul 15573* | Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) | ||
Theorem | climsub 15574* | Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 − 𝐵)) | ||
Theorem | climaddc1 15575* | Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) + 𝐶)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐴 + 𝐶)) | ||
Theorem | climaddc2 15576* | Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 + (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 + 𝐴)) | ||
Theorem | climmulc2 15577* | Limit of a sequence multiplied by a constant 𝐶. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 · 𝐴)) | ||
Theorem | climsubc1 15578* | Limit of a constant 𝐶 subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) − 𝐶)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐴 − 𝐶)) | ||
Theorem | climsubc2 15579* | Limit of a constant 𝐶 minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 − (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 − 𝐴)) | ||
Theorem | climle 15580* | Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | climsqz 15581* | Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | ||
Theorem | climsqz2 15582* | Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | ||
Theorem | rlimadd 15583* | Limit of the sum of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ⇝𝑟 (𝐷 + 𝐸)) | ||
Theorem | rlimaddOLD 15584* | Obsolete version of rlimadd 15583 as of 27-Sep-2024. (Contributed by Mario Carneiro, 22-Sep-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ⇝𝑟 (𝐷 + 𝐸)) | ||
Theorem | rlimsub 15585* | Limit of the difference of two converging functions. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⇝𝑟 (𝐷 − 𝐸)) | ||
Theorem | rlimmul 15586* | Limit of the product of two converging functions. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ⇝𝑟 (𝐷 · 𝐸)) | ||
Theorem | rlimmulOLD 15587* | Obsolete version of rlimmul 15586 as of 27-Sep-2024. (Contributed by Mario Carneiro, 22-Sep-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ⇝𝑟 (𝐷 · 𝐸)) | ||
Theorem | rlimdiv 15588* | Limit of the quotient of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) & ⊢ (𝜑 → 𝐸 ≠ 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸)) | ||
Theorem | rlimneg 15589* | Limit of the negative of a sequence. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ -𝐵) ⇝𝑟 -𝐶) | ||
Theorem | rlimle 15590* | Comparison of the limits of two sequences. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐷 ≤ 𝐸) | ||
Theorem | rlimsqzlem 15591* | Lemma for rlimsqz 15592 and rlimsqz2 15593. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.) |
⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → (abs‘(𝐶 − 𝐸)) ≤ (abs‘(𝐵 − 𝐷))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐸) | ||
Theorem | rlimsqz 15592* | Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.) |
⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐵 ≤ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) | ||
Theorem | rlimsqz2 15593* | Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 3-Feb-2014.) (Revised by Mario Carneiro, 20-May-2016.) |
⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐶 ≤ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐷 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) | ||
Theorem | lo1le 15594* | Transfer eventual upper boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 26-May-2016.) |
⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ ≤𝑂(1)) | ||
Theorem | o1le 15595* | Transfer eventual boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 25-Sep-2014.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥)) → (abs‘𝐶) ≤ (abs‘𝐵)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) | ||
Theorem | rlimno1 15596* | A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ¬ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) | ||
Theorem | clim2ser 15597* | The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) ⇒ ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁))) | ||
Theorem | clim2ser2 15598* | The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁))) | ||
Theorem | iserex 15599* | An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) | ||
Theorem | isermulc2 15600* | Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Mario Carneiro, 1-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |