MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptelcdm Structured version   Visualization version   GIF version

Theorem fvmptelcdm 7047
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fvmptelcdm.1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Assertion
Ref Expression
fvmptelcdm ((𝜑𝑥𝐴) → 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fvmptelcdm
StepHypRef Expression
1 fvmptelcdm.1 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
2 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32fmpt 7044 . . 3 (∀𝑥𝐴 𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
41, 3sylibr 234 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
54r19.21bi 3221 1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  cmpt 5173  wf 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486
This theorem is referenced by:  rlimmptrcl  15515  lo1mptrcl  15529  o1mptrcl  15530  frlmgsum  21679  uvcresum  21700  psrass1lem  21839  txcnp  23505  ptcnp  23507  ptcn  23512  cnmpt11  23548  cnmpt1t  23550  cnmpt12  23552  cnmptkp  23565  cnmptk1  23566  cnmptkk  23568  cnmptk1p  23570  cnmptk2  23571  cnmpt1plusg  23972  cnmpt1vsca  24079  cnmpt1ds  24729  cncfcompt2  24799  cncfmpt2ss  24807  cnmpt1ip  25145  divcncf  25346  mbfmptcl  25535  i1fposd  25606  itgss3  25714  dvmptcl  25861  dvmptco  25874  dvle  25910  dvfsumle  25924  dvfsumleOLD  25925  dvfsumge  25926  dvmptrecl  25928  itgparts  25952  itgsubstlem  25953  itgsubst  25954  ulmss  26304  ulmdvlem2  26308  itgulm2  26316  logtayl  26567  intlewftc  42034  cncfcompt  45864  cncficcgt0  45869  itgsubsticclem  45956  sge0iunmptlemre  46396  hoicvrrex  46537  smfadd  46746  smfpimioompt  46767
  Copyright terms: Public domain W3C validator