| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptelcdm | Structured version Visualization version GIF version | ||
| Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fvmptelcdm.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Ref | Expression |
|---|---|
| fvmptelcdm | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptelcdm.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | |
| 2 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | fmpt 7085 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 4 | 1, 3 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 5 | 4 | r19.21bi 3230 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ↦ cmpt 5191 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: rlimmptrcl 15581 lo1mptrcl 15595 o1mptrcl 15596 frlmgsum 21688 uvcresum 21709 psrass1lem 21848 txcnp 23514 ptcnp 23516 ptcn 23521 cnmpt11 23557 cnmpt1t 23559 cnmpt12 23561 cnmptkp 23574 cnmptk1 23575 cnmptkk 23577 cnmptk1p 23579 cnmptk2 23580 cnmpt1plusg 23981 cnmpt1vsca 24088 cnmpt1ds 24738 cncfcompt2 24808 cncfmpt2ss 24816 cnmpt1ip 25154 divcncf 25355 mbfmptcl 25544 i1fposd 25615 itgss3 25723 dvmptcl 25870 dvmptco 25883 dvle 25919 dvfsumle 25933 dvfsumleOLD 25934 dvfsumge 25935 dvmptrecl 25937 itgparts 25961 itgsubstlem 25962 itgsubst 25963 ulmss 26313 ulmdvlem2 26317 itgulm2 26325 logtayl 26576 intlewftc 42056 cncfcompt 45888 cncficcgt0 45893 itgsubsticclem 45980 sge0iunmptlemre 46420 hoicvrrex 46561 smfadd 46770 smfpimioompt 46791 |
| Copyright terms: Public domain | W3C validator |