| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptelcdm | Structured version Visualization version GIF version | ||
| Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fvmptelcdm.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Ref | Expression |
|---|---|
| fvmptelcdm | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptelcdm.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | |
| 2 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | fmpt 7043 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 4 | 1, 3 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 5 | 4 | r19.21bi 3224 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ↦ cmpt 5170 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: rlimmptrcl 15515 lo1mptrcl 15529 o1mptrcl 15530 frlmgsum 21709 uvcresum 21730 psrass1lem 21869 txcnp 23535 ptcnp 23537 ptcn 23542 cnmpt11 23578 cnmpt1t 23580 cnmpt12 23582 cnmptkp 23595 cnmptk1 23596 cnmptkk 23598 cnmptk1p 23600 cnmptk2 23601 cnmpt1plusg 24002 cnmpt1vsca 24109 cnmpt1ds 24758 cncfcompt2 24828 cncfmpt2ss 24836 cnmpt1ip 25174 divcncf 25375 mbfmptcl 25564 i1fposd 25635 itgss3 25743 dvmptcl 25890 dvmptco 25903 dvle 25939 dvfsumle 25953 dvfsumleOLD 25954 dvfsumge 25955 dvmptrecl 25957 itgparts 25981 itgsubstlem 25982 itgsubst 25983 ulmss 26333 ulmdvlem2 26337 itgulm2 26345 logtayl 26596 intlewftc 42102 cncfcompt 45929 cncficcgt0 45934 itgsubsticclem 46021 sge0iunmptlemre 46461 hoicvrrex 46602 smfadd 46811 smfpimioompt 46832 |
| Copyright terms: Public domain | W3C validator |