| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptelcdm | Structured version Visualization version GIF version | ||
| Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fvmptelcdm.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Ref | Expression |
|---|---|
| fvmptelcdm | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptelcdm.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | |
| 2 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | fmpt 7044 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 4 | 1, 3 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 5 | 4 | r19.21bi 3221 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5173 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-f 6486 |
| This theorem is referenced by: rlimmptrcl 15515 lo1mptrcl 15529 o1mptrcl 15530 frlmgsum 21679 uvcresum 21700 psrass1lem 21839 txcnp 23505 ptcnp 23507 ptcn 23512 cnmpt11 23548 cnmpt1t 23550 cnmpt12 23552 cnmptkp 23565 cnmptk1 23566 cnmptkk 23568 cnmptk1p 23570 cnmptk2 23571 cnmpt1plusg 23972 cnmpt1vsca 24079 cnmpt1ds 24729 cncfcompt2 24799 cncfmpt2ss 24807 cnmpt1ip 25145 divcncf 25346 mbfmptcl 25535 i1fposd 25606 itgss3 25714 dvmptcl 25861 dvmptco 25874 dvle 25910 dvfsumle 25924 dvfsumleOLD 25925 dvfsumge 25926 dvmptrecl 25928 itgparts 25952 itgsubstlem 25953 itgsubst 25954 ulmss 26304 ulmdvlem2 26308 itgulm2 26316 logtayl 26567 intlewftc 42034 cncfcompt 45864 cncficcgt0 45869 itgsubsticclem 45956 sge0iunmptlemre 46396 hoicvrrex 46537 smfadd 46746 smfpimioompt 46767 |
| Copyright terms: Public domain | W3C validator |