MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptelcdm Structured version   Visualization version   GIF version

Theorem fvmptelcdm 7085
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fvmptelcdm.1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Assertion
Ref Expression
fvmptelcdm ((𝜑𝑥𝐴) → 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fvmptelcdm
StepHypRef Expression
1 fvmptelcdm.1 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
2 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32fmpt 7082 . . 3 (∀𝑥𝐴 𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
41, 3sylibr 234 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
54r19.21bi 3229 1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  cmpt 5188  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  rlimmptrcl  15574  lo1mptrcl  15588  o1mptrcl  15589  frlmgsum  21681  uvcresum  21702  psrass1lem  21841  txcnp  23507  ptcnp  23509  ptcn  23514  cnmpt11  23550  cnmpt1t  23552  cnmpt12  23554  cnmptkp  23567  cnmptk1  23568  cnmptkk  23570  cnmptk1p  23572  cnmptk2  23573  cnmpt1plusg  23974  cnmpt1vsca  24081  cnmpt1ds  24731  cncfcompt2  24801  cncfmpt2ss  24809  cnmpt1ip  25147  divcncf  25348  mbfmptcl  25537  i1fposd  25608  itgss3  25716  dvmptcl  25863  dvmptco  25876  dvle  25912  dvfsumle  25926  dvfsumleOLD  25927  dvfsumge  25928  dvmptrecl  25930  itgparts  25954  itgsubstlem  25955  itgsubst  25956  ulmss  26306  ulmdvlem2  26310  itgulm2  26318  logtayl  26569  intlewftc  42049  cncfcompt  45881  cncficcgt0  45886  itgsubsticclem  45973  sge0iunmptlemre  46413  hoicvrrex  46554  smfadd  46763  smfpimioompt  46784
  Copyright terms: Public domain W3C validator