| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptelcdm | Structured version Visualization version GIF version | ||
| Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fvmptelcdm.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| Ref | Expression |
|---|---|
| fvmptelcdm | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptelcdm.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | |
| 2 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | fmpt 7099 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 4 | 1, 3 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 5 | 4 | r19.21bi 3234 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ↦ cmpt 5201 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: rlimmptrcl 15622 lo1mptrcl 15636 o1mptrcl 15637 frlmgsum 21730 uvcresum 21751 psrass1lem 21890 txcnp 23556 ptcnp 23558 ptcn 23563 cnmpt11 23599 cnmpt1t 23601 cnmpt12 23603 cnmptkp 23616 cnmptk1 23617 cnmptkk 23619 cnmptk1p 23621 cnmptk2 23622 cnmpt1plusg 24023 cnmpt1vsca 24130 cnmpt1ds 24780 cncfcompt2 24850 cncfmpt2ss 24858 cnmpt1ip 25197 divcncf 25398 mbfmptcl 25587 i1fposd 25658 itgss3 25766 dvmptcl 25913 dvmptco 25926 dvle 25962 dvfsumle 25976 dvfsumleOLD 25977 dvfsumge 25978 dvmptrecl 25980 itgparts 26004 itgsubstlem 26005 itgsubst 26006 ulmss 26356 ulmdvlem2 26360 itgulm2 26368 logtayl 26619 intlewftc 42020 cncfcompt 45860 cncficcgt0 45865 itgsubsticclem 45952 sge0iunmptlemre 46392 hoicvrrex 46533 smfadd 46742 smfpimioompt 46763 |
| Copyright terms: Public domain | W3C validator |