Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptelcdm | Structured version Visualization version GIF version |
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fvmptelcdm.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Ref | Expression |
---|---|
fvmptelcdm | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptelcdm.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | |
2 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | fmpt 7016 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
4 | 1, 3 | sylibr 233 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
5 | 4 | r19.21bi 3230 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ∀wral 3061 ↦ cmpt 5164 ⟶wf 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-fun 6460 df-fn 6461 df-f 6462 |
This theorem is referenced by: rlimmptrcl 15366 lo1mptrcl 15380 o1mptrcl 15381 frlmgsum 21028 uvcresum 21049 psrass1lemOLD 21192 psrass1lem 21195 txcnp 22820 ptcnp 22822 ptcn 22827 cnmpt11 22863 cnmpt1t 22865 cnmpt12 22867 cnmptkp 22880 cnmptk1 22881 cnmptkk 22883 cnmptk1p 22885 cnmptk2 22886 cnmpt1plusg 23287 cnmpt1vsca 23394 cnmpt1ds 24054 cncfcompt2 24120 cncfmpt2ss 24128 cnmpt1ip 24460 divcncf 24660 mbfmptcl 24849 i1fposd 24921 itgss3 25028 dvmptcl 25172 dvmptco 25185 dvle 25220 dvfsumle 25234 dvfsumge 25235 dvmptrecl 25237 itgparts 25260 itgsubstlem 25261 itgsubst 25262 ulmss 25605 ulmdvlem2 25609 itgulm2 25617 logtayl 25864 intlewftc 40269 cncfcompt 43653 cncficcgt0 43658 itgsubsticclem 43745 sge0iunmptlemre 44183 hoicvrrex 44324 smfadd 44533 smfpimioompt 44554 smfinfmpt 44587 |
Copyright terms: Public domain | W3C validator |