MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptelcdm Structured version   Visualization version   GIF version

Theorem fvmptelcdm 7088
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fvmptelcdm.1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Assertion
Ref Expression
fvmptelcdm ((𝜑𝑥𝐴) → 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fvmptelcdm
StepHypRef Expression
1 fvmptelcdm.1 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
2 eqid 2730 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32fmpt 7085 . . 3 (∀𝑥𝐴 𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
41, 3sylibr 234 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
54r19.21bi 3230 1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  cmpt 5191  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  rlimmptrcl  15581  lo1mptrcl  15595  o1mptrcl  15596  frlmgsum  21688  uvcresum  21709  psrass1lem  21848  txcnp  23514  ptcnp  23516  ptcn  23521  cnmpt11  23557  cnmpt1t  23559  cnmpt12  23561  cnmptkp  23574  cnmptk1  23575  cnmptkk  23577  cnmptk1p  23579  cnmptk2  23580  cnmpt1plusg  23981  cnmpt1vsca  24088  cnmpt1ds  24738  cncfcompt2  24808  cncfmpt2ss  24816  cnmpt1ip  25154  divcncf  25355  mbfmptcl  25544  i1fposd  25615  itgss3  25723  dvmptcl  25870  dvmptco  25883  dvle  25919  dvfsumle  25933  dvfsumleOLD  25934  dvfsumge  25935  dvmptrecl  25937  itgparts  25961  itgsubstlem  25962  itgsubst  25963  ulmss  26313  ulmdvlem2  26317  itgulm2  26325  logtayl  26576  intlewftc  42056  cncfcompt  45888  cncficcgt0  45893  itgsubsticclem  45980  sge0iunmptlemre  46420  hoicvrrex  46561  smfadd  46770  smfpimioompt  46791
  Copyright terms: Public domain W3C validator