MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptelcdm Structured version   Visualization version   GIF version

Theorem fvmptelcdm 7067
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fvmptelcdm.1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Assertion
Ref Expression
fvmptelcdm ((𝜑𝑥𝐴) → 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fvmptelcdm
StepHypRef Expression
1 fvmptelcdm.1 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
2 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32fmpt 7064 . . 3 (∀𝑥𝐴 𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
41, 3sylibr 234 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
54r19.21bi 3227 1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  cmpt 5183  wf 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503
This theorem is referenced by:  rlimmptrcl  15550  lo1mptrcl  15564  o1mptrcl  15565  frlmgsum  21657  uvcresum  21678  psrass1lem  21817  txcnp  23483  ptcnp  23485  ptcn  23490  cnmpt11  23526  cnmpt1t  23528  cnmpt12  23530  cnmptkp  23543  cnmptk1  23544  cnmptkk  23546  cnmptk1p  23548  cnmptk2  23549  cnmpt1plusg  23950  cnmpt1vsca  24057  cnmpt1ds  24707  cncfcompt2  24777  cncfmpt2ss  24785  cnmpt1ip  25123  divcncf  25324  mbfmptcl  25513  i1fposd  25584  itgss3  25692  dvmptcl  25839  dvmptco  25852  dvle  25888  dvfsumle  25902  dvfsumleOLD  25903  dvfsumge  25904  dvmptrecl  25906  itgparts  25930  itgsubstlem  25931  itgsubst  25932  ulmss  26282  ulmdvlem2  26286  itgulm2  26294  logtayl  26545  intlewftc  42022  cncfcompt  45854  cncficcgt0  45859  itgsubsticclem  45946  sge0iunmptlemre  46386  hoicvrrex  46527  smfadd  46736  smfpimioompt  46757
  Copyright terms: Public domain W3C validator