MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptelcdm Structured version   Visualization version   GIF version

Theorem fvmptelcdm 7147
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fvmptelcdm.1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Assertion
Ref Expression
fvmptelcdm ((𝜑𝑥𝐴) → 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fvmptelcdm
StepHypRef Expression
1 fvmptelcdm.1 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
2 eqid 2740 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32fmpt 7144 . . 3 (∀𝑥𝐴 𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
41, 3sylibr 234 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
54r19.21bi 3257 1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067  cmpt 5249  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  rlimmptrcl  15654  lo1mptrcl  15668  o1mptrcl  15669  frlmgsum  21815  uvcresum  21836  psrass1lem  21975  txcnp  23649  ptcnp  23651  ptcn  23656  cnmpt11  23692  cnmpt1t  23694  cnmpt12  23696  cnmptkp  23709  cnmptk1  23710  cnmptkk  23712  cnmptk1p  23714  cnmptk2  23715  cnmpt1plusg  24116  cnmpt1vsca  24223  cnmpt1ds  24883  cncfcompt2  24953  cncfmpt2ss  24961  cnmpt1ip  25300  divcncf  25501  mbfmptcl  25690  i1fposd  25762  itgss3  25870  dvmptcl  26017  dvmptco  26030  dvle  26066  dvfsumle  26080  dvfsumleOLD  26081  dvfsumge  26082  dvmptrecl  26084  itgparts  26108  itgsubstlem  26109  itgsubst  26110  ulmss  26458  ulmdvlem2  26462  itgulm2  26470  logtayl  26720  intlewftc  42018  cncfcompt  45804  cncficcgt0  45809  itgsubsticclem  45896  sge0iunmptlemre  46336  hoicvrrex  46477  smfadd  46686  smfpimioompt  46707  smfinfmpt  46740
  Copyright terms: Public domain W3C validator