![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptelcdm | Structured version Visualization version GIF version |
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fvmptelcdm.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Ref | Expression |
---|---|
fvmptelcdm | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptelcdm.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | |
2 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | fmpt 7144 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
4 | 1, 3 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
5 | 4 | r19.21bi 3257 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ↦ cmpt 5249 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: rlimmptrcl 15654 lo1mptrcl 15668 o1mptrcl 15669 frlmgsum 21815 uvcresum 21836 psrass1lem 21975 txcnp 23649 ptcnp 23651 ptcn 23656 cnmpt11 23692 cnmpt1t 23694 cnmpt12 23696 cnmptkp 23709 cnmptk1 23710 cnmptkk 23712 cnmptk1p 23714 cnmptk2 23715 cnmpt1plusg 24116 cnmpt1vsca 24223 cnmpt1ds 24883 cncfcompt2 24953 cncfmpt2ss 24961 cnmpt1ip 25300 divcncf 25501 mbfmptcl 25690 i1fposd 25762 itgss3 25870 dvmptcl 26017 dvmptco 26030 dvle 26066 dvfsumle 26080 dvfsumleOLD 26081 dvfsumge 26082 dvmptrecl 26084 itgparts 26108 itgsubstlem 26109 itgsubst 26110 ulmss 26458 ulmdvlem2 26462 itgulm2 26470 logtayl 26720 intlewftc 42018 cncfcompt 45804 cncficcgt0 45809 itgsubsticclem 45896 sge0iunmptlemre 46336 hoicvrrex 46477 smfadd 46686 smfpimioompt 46707 smfinfmpt 46740 |
Copyright terms: Public domain | W3C validator |