MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptelcdm Structured version   Visualization version   GIF version

Theorem fvmptelcdm 7046
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fvmptelcdm.1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Assertion
Ref Expression
fvmptelcdm ((𝜑𝑥𝐴) → 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fvmptelcdm
StepHypRef Expression
1 fvmptelcdm.1 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
2 eqid 2731 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32fmpt 7043 . . 3 (∀𝑥𝐴 𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
41, 3sylibr 234 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
54r19.21bi 3224 1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  cmpt 5170  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  rlimmptrcl  15515  lo1mptrcl  15529  o1mptrcl  15530  frlmgsum  21709  uvcresum  21730  psrass1lem  21869  txcnp  23535  ptcnp  23537  ptcn  23542  cnmpt11  23578  cnmpt1t  23580  cnmpt12  23582  cnmptkp  23595  cnmptk1  23596  cnmptkk  23598  cnmptk1p  23600  cnmptk2  23601  cnmpt1plusg  24002  cnmpt1vsca  24109  cnmpt1ds  24758  cncfcompt2  24828  cncfmpt2ss  24836  cnmpt1ip  25174  divcncf  25375  mbfmptcl  25564  i1fposd  25635  itgss3  25743  dvmptcl  25890  dvmptco  25903  dvle  25939  dvfsumle  25953  dvfsumleOLD  25954  dvfsumge  25955  dvmptrecl  25957  itgparts  25981  itgsubstlem  25982  itgsubst  25983  ulmss  26333  ulmdvlem2  26337  itgulm2  26345  logtayl  26596  intlewftc  42102  cncfcompt  45929  cncficcgt0  45934  itgsubsticclem  46021  sge0iunmptlemre  46461  hoicvrrex  46602  smfadd  46811  smfpimioompt  46832
  Copyright terms: Public domain W3C validator