![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptelcdm | Structured version Visualization version GIF version |
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fvmptelcdm.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Ref | Expression |
---|---|
fvmptelcdm | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptelcdm.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | |
2 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | fmpt 7129 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
4 | 1, 3 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
5 | 4 | r19.21bi 3248 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∀wral 3058 ↦ cmpt 5230 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-fun 6564 df-fn 6565 df-f 6566 |
This theorem is referenced by: rlimmptrcl 15640 lo1mptrcl 15654 o1mptrcl 15655 frlmgsum 21809 uvcresum 21830 psrass1lem 21969 txcnp 23643 ptcnp 23645 ptcn 23650 cnmpt11 23686 cnmpt1t 23688 cnmpt12 23690 cnmptkp 23703 cnmptk1 23704 cnmptkk 23706 cnmptk1p 23708 cnmptk2 23709 cnmpt1plusg 24110 cnmpt1vsca 24217 cnmpt1ds 24877 cncfcompt2 24947 cncfmpt2ss 24955 cnmpt1ip 25294 divcncf 25495 mbfmptcl 25684 i1fposd 25756 itgss3 25864 dvmptcl 26011 dvmptco 26024 dvle 26060 dvfsumle 26074 dvfsumleOLD 26075 dvfsumge 26076 dvmptrecl 26078 itgparts 26102 itgsubstlem 26103 itgsubst 26104 ulmss 26454 ulmdvlem2 26458 itgulm2 26466 logtayl 26716 intlewftc 42042 cncfcompt 45838 cncficcgt0 45843 itgsubsticclem 45930 sge0iunmptlemre 46370 hoicvrrex 46511 smfadd 46720 smfpimioompt 46741 |
Copyright terms: Public domain | W3C validator |