Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubpr Structured version   Visualization version   GIF version

Theorem lubpr 48821
Description: The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubpr.k (𝜑𝐾 ∈ Poset)
lubpr.b 𝐵 = (Base‘𝐾)
lubpr.x (𝜑𝑋𝐵)
lubpr.y (𝜑𝑌𝐵)
lubpr.l = (le‘𝐾)
lubpr.c (𝜑𝑋 𝑌)
lubpr.s (𝜑𝑆 = {𝑋, 𝑌})
lubpr.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubpr (𝜑 → (𝑈𝑆) = 𝑌)

Proof of Theorem lubpr
StepHypRef Expression
1 lubpr.k . . 3 (𝜑𝐾 ∈ Poset)
2 lubpr.b . . 3 𝐵 = (Base‘𝐾)
3 lubpr.x . . 3 (𝜑𝑋𝐵)
4 lubpr.y . . 3 (𝜑𝑌𝐵)
5 lubpr.l . . 3 = (le‘𝐾)
6 lubpr.c . . 3 (𝜑𝑋 𝑌)
7 lubpr.s . . 3 (𝜑𝑆 = {𝑋, 𝑌})
8 lubpr.u . . 3 𝑈 = (lub‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8lubprlem 48819 . 2 (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))
109simprd 495 1 (𝜑 → (𝑈𝑆) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {cpr 4608   class class class wbr 5123  dom cdm 5665  cfv 6541  Basecbs 17229  lecple 17280  Posetcpo 18323  lubclub 18325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-proset 18310  df-poset 18329  df-lub 18360
This theorem is referenced by:  glbprlem  48822  posjidm  48829
  Copyright terms: Public domain W3C validator