Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubpr Structured version   Visualization version   GIF version

Theorem lubpr 48974
Description: The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubpr.k (𝜑𝐾 ∈ Poset)
lubpr.b 𝐵 = (Base‘𝐾)
lubpr.x (𝜑𝑋𝐵)
lubpr.y (𝜑𝑌𝐵)
lubpr.l = (le‘𝐾)
lubpr.c (𝜑𝑋 𝑌)
lubpr.s (𝜑𝑆 = {𝑋, 𝑌})
lubpr.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubpr (𝜑 → (𝑈𝑆) = 𝑌)

Proof of Theorem lubpr
StepHypRef Expression
1 lubpr.k . . 3 (𝜑𝐾 ∈ Poset)
2 lubpr.b . . 3 𝐵 = (Base‘𝐾)
3 lubpr.x . . 3 (𝜑𝑋𝐵)
4 lubpr.y . . 3 (𝜑𝑌𝐵)
5 lubpr.l . . 3 = (le‘𝐾)
6 lubpr.c . . 3 (𝜑𝑋 𝑌)
7 lubpr.s . . 3 (𝜑𝑆 = {𝑋, 𝑌})
8 lubpr.u . . 3 𝑈 = (lub‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8lubprlem 48972 . 2 (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))
109simprd 495 1 (𝜑 → (𝑈𝑆) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  {cpr 4576   class class class wbr 5089  dom cdm 5614  cfv 6477  Basecbs 17112  lecple 17160  Posetcpo 18205  lubclub 18207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-proset 18192  df-poset 18211  df-lub 18242
This theorem is referenced by:  glbprlem  48975  posjidm  48982
  Copyright terms: Public domain W3C validator