| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lubpr | Structured version Visualization version GIF version | ||
| Description: The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lubpr.l | ⊢ ≤ = (le‘𝐾) |
| lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
| lubpr.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| lubpr | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 2 | lubpr.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | lubpr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | lubpr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | lubpr.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 6 | lubpr.c | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 7 | lubpr.s | . . 3 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
| 8 | lubpr.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lubprlem 48819 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
| 10 | 9 | simprd 495 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cpr 4608 class class class wbr 5123 dom cdm 5665 ‘cfv 6541 Basecbs 17229 lecple 17280 Posetcpo 18323 lubclub 18325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-proset 18310 df-poset 18329 df-lub 18360 |
| This theorem is referenced by: glbprlem 48822 posjidm 48829 |
| Copyright terms: Public domain | W3C validator |