![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lubpr | Structured version Visualization version GIF version |
Description: The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lubpr.l | ⊢ ≤ = (le‘𝐾) |
lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
lubpr.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
lubpr | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubpr.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
2 | lubpr.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | lubpr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
4 | lubpr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
5 | lubpr.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | lubpr.c | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
7 | lubpr.s | . . 3 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
8 | lubpr.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lubprlem 48804 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
10 | 9 | simprd 495 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cpr 4636 class class class wbr 5151 dom cdm 5693 ‘cfv 6569 Basecbs 17254 lecple 17314 Posetcpo 18374 lubclub 18376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-proset 18361 df-poset 18380 df-lub 18413 |
This theorem is referenced by: glbprlem 48807 posjidm 48814 |
Copyright terms: Public domain | W3C validator |