| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lubpr | Structured version Visualization version GIF version | ||
| Description: The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lubpr.l | ⊢ ≤ = (le‘𝐾) |
| lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
| lubpr.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| lubpr | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 2 | lubpr.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | lubpr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | lubpr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | lubpr.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 6 | lubpr.c | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 7 | lubpr.s | . . 3 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
| 8 | lubpr.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lubprlem 49086 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
| 10 | 9 | simprd 495 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {cpr 4577 class class class wbr 5093 dom cdm 5619 ‘cfv 6486 Basecbs 17122 lecple 17170 Posetcpo 18215 lubclub 18217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-proset 18202 df-poset 18221 df-lub 18252 |
| This theorem is referenced by: glbprlem 49089 posjidm 49096 |
| Copyright terms: Public domain | W3C validator |