| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lubpr | Structured version Visualization version GIF version | ||
| Description: The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lubpr.l | ⊢ ≤ = (le‘𝐾) |
| lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
| lubpr.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| lubpr | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 2 | lubpr.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | lubpr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | lubpr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | lubpr.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 6 | lubpr.c | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 7 | lubpr.s | . . 3 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
| 8 | lubpr.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lubprlem 48972 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
| 10 | 9 | simprd 495 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 {cpr 4576 class class class wbr 5089 dom cdm 5614 ‘cfv 6477 Basecbs 17112 lecple 17160 Posetcpo 18205 lubclub 18207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-proset 18192 df-poset 18211 df-lub 18242 |
| This theorem is referenced by: glbprlem 48975 posjidm 48982 |
| Copyright terms: Public domain | W3C validator |