Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lubprdm | Structured version Visualization version GIF version |
Description: The set of two comparable elements in a poset has LUB. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lubpr.l | ⊢ ≤ = (le‘𝐾) |
lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
lubpr.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
lubprdm | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubpr.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
2 | lubpr.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | lubpr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
4 | lubpr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
5 | lubpr.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | lubpr.c | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
7 | lubpr.s | . . 3 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
8 | lubpr.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lubprlem 46144 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
10 | 9 | simpld 494 | 1 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cpr 4560 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 Basecbs 16840 lecple 16895 Posetcpo 17940 lubclub 17942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-proset 17928 df-poset 17946 df-lub 17979 |
This theorem is referenced by: glbprlem 46147 toslat 46156 |
Copyright terms: Public domain | W3C validator |