Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lubprdm | Structured version Visualization version GIF version |
Description: The set of two comparable elements in a poset has LUB. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lubpr.l | ⊢ ≤ = (le‘𝐾) |
lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
lubpr.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
lubprdm | ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubpr.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
2 | lubpr.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | lubpr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
4 | lubpr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
5 | lubpr.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | lubpr.c | . . 3 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
7 | lubpr.s | . . 3 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
8 | lubpr.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lubprlem 46256 | . 2 ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈‘𝑆) = 𝑌)) |
10 | 9 | simpld 495 | 1 ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cpr 4563 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 Basecbs 16912 lecple 16969 Posetcpo 18025 lubclub 18027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-proset 18013 df-poset 18031 df-lub 18064 |
This theorem is referenced by: glbprlem 46259 toslat 46268 |
Copyright terms: Public domain | W3C validator |