| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > glbprlem | Structured version Visualization version GIF version | ||
| Description: Lemma for glbprdm 48958 and glbpr 48959. (Contributed by Zhi Wang, 26-Sep-2024.) |
| Ref | Expression |
|---|---|
| lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
| lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lubpr.l | ⊢ ≤ = (le‘𝐾) |
| lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
| glbpr.g | ⊢ 𝐺 = (glb‘𝐾) |
| Ref | Expression |
|---|---|
| glbprlem | ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺‘𝑆) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
| 3 | 2 | odupos 18294 | . . . . 5 ⊢ (𝐾 ∈ Poset → (ODual‘𝐾) ∈ Poset) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (ODual‘𝐾) ∈ Poset) |
| 5 | lubpr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | 2, 5 | odubas 18259 | . . . 4 ⊢ 𝐵 = (Base‘(ODual‘𝐾)) |
| 7 | lubpr.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | lubpr.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | lubpr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 10 | 2, 9 | oduleval 18257 | . . . 4 ⊢ ◡ ≤ = (le‘(ODual‘𝐾)) |
| 11 | lubpr.c | . . . . 5 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 12 | brcnvg 5846 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌◡ ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) | |
| 13 | 7, 8, 12 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑌◡ ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) |
| 14 | 11, 13 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝑌◡ ≤ 𝑋) |
| 15 | lubpr.s | . . . . 5 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
| 16 | prcom 4699 | . . . . 5 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
| 17 | 15, 16 | eqtrdi 2781 | . . . 4 ⊢ (𝜑 → 𝑆 = {𝑌, 𝑋}) |
| 18 | eqid 2730 | . . . 4 ⊢ (lub‘(ODual‘𝐾)) = (lub‘(ODual‘𝐾)) | |
| 19 | 4, 6, 7, 8, 10, 14, 17, 18 | lubprdm 48955 | . . 3 ⊢ (𝜑 → 𝑆 ∈ dom (lub‘(ODual‘𝐾))) |
| 20 | glbpr.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
| 21 | 2, 20 | odulub 18373 | . . . . 5 ⊢ (𝐾 ∈ Poset → 𝐺 = (lub‘(ODual‘𝐾))) |
| 22 | 1, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 = (lub‘(ODual‘𝐾))) |
| 23 | 22 | dmeqd 5872 | . . 3 ⊢ (𝜑 → dom 𝐺 = dom (lub‘(ODual‘𝐾))) |
| 24 | 19, 23 | eleqtrrd 2832 | . 2 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
| 25 | 22 | fveq1d 6863 | . . 3 ⊢ (𝜑 → (𝐺‘𝑆) = ((lub‘(ODual‘𝐾))‘𝑆)) |
| 26 | 4, 6, 7, 8, 10, 14, 17, 18 | lubpr 48956 | . . 3 ⊢ (𝜑 → ((lub‘(ODual‘𝐾))‘𝑆) = 𝑋) |
| 27 | 25, 26 | eqtrd 2765 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = 𝑋) |
| 28 | 24, 27 | jca 511 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺‘𝑆) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cpr 4594 class class class wbr 5110 ◡ccnv 5640 dom cdm 5641 ‘cfv 6514 Basecbs 17186 lecple 17234 ODualcodu 18254 Posetcpo 18275 lubclub 18277 glbcglb 18278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ple 17247 df-odu 18255 df-proset 18262 df-poset 18281 df-lub 18312 df-glb 18313 |
| This theorem is referenced by: glbprdm 48958 glbpr 48959 |
| Copyright terms: Public domain | W3C validator |