![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > glbprlem | Structured version Visualization version GIF version |
Description: Lemma for glbprdm 47687 and glbpr 47688. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubpr.k | β’ (π β πΎ β Poset) |
lubpr.b | β’ π΅ = (BaseβπΎ) |
lubpr.x | β’ (π β π β π΅) |
lubpr.y | β’ (π β π β π΅) |
lubpr.l | β’ β€ = (leβπΎ) |
lubpr.c | β’ (π β π β€ π) |
lubpr.s | β’ (π β π = {π, π}) |
glbpr.g | β’ πΊ = (glbβπΎ) |
Ref | Expression |
---|---|
glbprlem | β’ (π β (π β dom πΊ β§ (πΊβπ) = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubpr.k | . . . . 5 β’ (π β πΎ β Poset) | |
2 | eqid 2732 | . . . . . 6 β’ (ODualβπΎ) = (ODualβπΎ) | |
3 | 2 | odupos 18285 | . . . . 5 β’ (πΎ β Poset β (ODualβπΎ) β Poset) |
4 | 1, 3 | syl 17 | . . . 4 β’ (π β (ODualβπΎ) β Poset) |
5 | lubpr.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
6 | 2, 5 | odubas 18248 | . . . 4 β’ π΅ = (Baseβ(ODualβπΎ)) |
7 | lubpr.y | . . . 4 β’ (π β π β π΅) | |
8 | lubpr.x | . . . 4 β’ (π β π β π΅) | |
9 | lubpr.l | . . . . 5 β’ β€ = (leβπΎ) | |
10 | 2, 9 | oduleval 18246 | . . . 4 β’ β‘ β€ = (leβ(ODualβπΎ)) |
11 | lubpr.c | . . . . 5 β’ (π β π β€ π) | |
12 | brcnvg 5879 | . . . . . 6 β’ ((π β π΅ β§ π β π΅) β (πβ‘ β€ π β π β€ π)) | |
13 | 7, 8, 12 | syl2anc 584 | . . . . 5 β’ (π β (πβ‘ β€ π β π β€ π)) |
14 | 11, 13 | mpbird 256 | . . . 4 β’ (π β πβ‘ β€ π) |
15 | lubpr.s | . . . . 5 β’ (π β π = {π, π}) | |
16 | prcom 4736 | . . . . 5 β’ {π, π} = {π, π} | |
17 | 15, 16 | eqtrdi 2788 | . . . 4 β’ (π β π = {π, π}) |
18 | eqid 2732 | . . . 4 β’ (lubβ(ODualβπΎ)) = (lubβ(ODualβπΎ)) | |
19 | 4, 6, 7, 8, 10, 14, 17, 18 | lubprdm 47684 | . . 3 β’ (π β π β dom (lubβ(ODualβπΎ))) |
20 | glbpr.g | . . . . . 6 β’ πΊ = (glbβπΎ) | |
21 | 2, 20 | odulub 18364 | . . . . 5 β’ (πΎ β Poset β πΊ = (lubβ(ODualβπΎ))) |
22 | 1, 21 | syl 17 | . . . 4 β’ (π β πΊ = (lubβ(ODualβπΎ))) |
23 | 22 | dmeqd 5905 | . . 3 β’ (π β dom πΊ = dom (lubβ(ODualβπΎ))) |
24 | 19, 23 | eleqtrrd 2836 | . 2 β’ (π β π β dom πΊ) |
25 | 22 | fveq1d 6893 | . . 3 β’ (π β (πΊβπ) = ((lubβ(ODualβπΎ))βπ)) |
26 | 4, 6, 7, 8, 10, 14, 17, 18 | lubpr 47685 | . . 3 β’ (π β ((lubβ(ODualβπΎ))βπ) = π) |
27 | 25, 26 | eqtrd 2772 | . 2 β’ (π β (πΊβπ) = π) |
28 | 24, 27 | jca 512 | 1 β’ (π β (π β dom πΊ β§ (πΊβπ) = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {cpr 4630 class class class wbr 5148 β‘ccnv 5675 dom cdm 5676 βcfv 6543 Basecbs 17148 lecple 17208 ODualcodu 18243 Posetcpo 18264 lubclub 18266 glbcglb 18267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-dec 12682 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ple 17221 df-odu 18244 df-proset 18252 df-poset 18270 df-lub 18303 df-glb 18304 |
This theorem is referenced by: glbprdm 47687 glbpr 47688 |
Copyright terms: Public domain | W3C validator |