Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > glbprlem | Structured version Visualization version GIF version |
Description: Lemma for glbprdm 46239 and glbpr 46240. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lubpr.l | ⊢ ≤ = (le‘𝐾) |
lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
glbpr.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
glbprlem | ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺‘𝑆) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubpr.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
2 | eqid 2740 | . . . . . 6 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
3 | 2 | odupos 18057 | . . . . 5 ⊢ (𝐾 ∈ Poset → (ODual‘𝐾) ∈ Poset) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (ODual‘𝐾) ∈ Poset) |
5 | lubpr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | 2, 5 | odubas 18020 | . . . 4 ⊢ 𝐵 = (Base‘(ODual‘𝐾)) |
7 | lubpr.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | lubpr.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | lubpr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
10 | 2, 9 | oduleval 18018 | . . . 4 ⊢ ◡ ≤ = (le‘(ODual‘𝐾)) |
11 | lubpr.c | . . . . 5 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
12 | brcnvg 5787 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌◡ ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) | |
13 | 7, 8, 12 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑌◡ ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) |
14 | 11, 13 | mpbird 256 | . . . 4 ⊢ (𝜑 → 𝑌◡ ≤ 𝑋) |
15 | lubpr.s | . . . . 5 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
16 | prcom 4674 | . . . . 5 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
17 | 15, 16 | eqtrdi 2796 | . . . 4 ⊢ (𝜑 → 𝑆 = {𝑌, 𝑋}) |
18 | eqid 2740 | . . . 4 ⊢ (lub‘(ODual‘𝐾)) = (lub‘(ODual‘𝐾)) | |
19 | 4, 6, 7, 8, 10, 14, 17, 18 | lubprdm 46236 | . . 3 ⊢ (𝜑 → 𝑆 ∈ dom (lub‘(ODual‘𝐾))) |
20 | glbpr.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
21 | 2, 20 | odulub 18136 | . . . . 5 ⊢ (𝐾 ∈ Poset → 𝐺 = (lub‘(ODual‘𝐾))) |
22 | 1, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 = (lub‘(ODual‘𝐾))) |
23 | 22 | dmeqd 5813 | . . 3 ⊢ (𝜑 → dom 𝐺 = dom (lub‘(ODual‘𝐾))) |
24 | 19, 23 | eleqtrrd 2844 | . 2 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
25 | 22 | fveq1d 6773 | . . 3 ⊢ (𝜑 → (𝐺‘𝑆) = ((lub‘(ODual‘𝐾))‘𝑆)) |
26 | 4, 6, 7, 8, 10, 14, 17, 18 | lubpr 46237 | . . 3 ⊢ (𝜑 → ((lub‘(ODual‘𝐾))‘𝑆) = 𝑋) |
27 | 25, 26 | eqtrd 2780 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = 𝑋) |
28 | 24, 27 | jca 512 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺‘𝑆) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {cpr 4569 class class class wbr 5079 ◡ccnv 5589 dom cdm 5590 ‘cfv 6432 Basecbs 16923 lecple 16980 ODualcodu 18015 Posetcpo 18036 lubclub 18038 glbcglb 18039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-nn 11985 df-2 12047 df-3 12048 df-4 12049 df-5 12050 df-6 12051 df-7 12052 df-8 12053 df-9 12054 df-dec 12449 df-sets 16876 df-slot 16894 df-ndx 16906 df-base 16924 df-ple 16993 df-odu 18016 df-proset 18024 df-poset 18042 df-lub 18075 df-glb 18076 |
This theorem is referenced by: glbprdm 46239 glbpr 46240 |
Copyright terms: Public domain | W3C validator |