Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > glbprlem | Structured version Visualization version GIF version |
Description: Lemma for glbprdm 46148 and glbpr 46149. (Contributed by Zhi Wang, 26-Sep-2024.) |
Ref | Expression |
---|---|
lubpr.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
lubpr.b | ⊢ 𝐵 = (Base‘𝐾) |
lubpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lubpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lubpr.l | ⊢ ≤ = (le‘𝐾) |
lubpr.c | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lubpr.s | ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) |
glbpr.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
glbprlem | ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺‘𝑆) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubpr.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
2 | eqid 2738 | . . . . . 6 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
3 | 2 | odupos 17961 | . . . . 5 ⊢ (𝐾 ∈ Poset → (ODual‘𝐾) ∈ Poset) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (ODual‘𝐾) ∈ Poset) |
5 | lubpr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | 2, 5 | odubas 17925 | . . . 4 ⊢ 𝐵 = (Base‘(ODual‘𝐾)) |
7 | lubpr.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | lubpr.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | lubpr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
10 | 2, 9 | oduleval 17923 | . . . 4 ⊢ ◡ ≤ = (le‘(ODual‘𝐾)) |
11 | lubpr.c | . . . . 5 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
12 | brcnvg 5777 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌◡ ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) | |
13 | 7, 8, 12 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑌◡ ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) |
14 | 11, 13 | mpbird 256 | . . . 4 ⊢ (𝜑 → 𝑌◡ ≤ 𝑋) |
15 | lubpr.s | . . . . 5 ⊢ (𝜑 → 𝑆 = {𝑋, 𝑌}) | |
16 | prcom 4665 | . . . . 5 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
17 | 15, 16 | eqtrdi 2795 | . . . 4 ⊢ (𝜑 → 𝑆 = {𝑌, 𝑋}) |
18 | eqid 2738 | . . . 4 ⊢ (lub‘(ODual‘𝐾)) = (lub‘(ODual‘𝐾)) | |
19 | 4, 6, 7, 8, 10, 14, 17, 18 | lubprdm 46145 | . . 3 ⊢ (𝜑 → 𝑆 ∈ dom (lub‘(ODual‘𝐾))) |
20 | glbpr.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
21 | 2, 20 | odulub 18040 | . . . . 5 ⊢ (𝐾 ∈ Poset → 𝐺 = (lub‘(ODual‘𝐾))) |
22 | 1, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐺 = (lub‘(ODual‘𝐾))) |
23 | 22 | dmeqd 5803 | . . 3 ⊢ (𝜑 → dom 𝐺 = dom (lub‘(ODual‘𝐾))) |
24 | 19, 23 | eleqtrrd 2842 | . 2 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
25 | 22 | fveq1d 6758 | . . 3 ⊢ (𝜑 → (𝐺‘𝑆) = ((lub‘(ODual‘𝐾))‘𝑆)) |
26 | 4, 6, 7, 8, 10, 14, 17, 18 | lubpr 46146 | . . 3 ⊢ (𝜑 → ((lub‘(ODual‘𝐾))‘𝑆) = 𝑋) |
27 | 25, 26 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = 𝑋) |
28 | 24, 27 | jca 511 | 1 ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺‘𝑆) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cpr 4560 class class class wbr 5070 ◡ccnv 5579 dom cdm 5580 ‘cfv 6418 Basecbs 16840 lecple 16895 ODualcodu 17920 Posetcpo 17940 lubclub 17942 glbcglb 17943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ple 16908 df-odu 17921 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 |
This theorem is referenced by: glbprdm 46148 glbpr 46149 |
Copyright terms: Public domain | W3C validator |