MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatfval Structured version   Visualization version   GIF version

Theorem mat2pmatfval 22750
Description: Value of the matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐵 = (Base‘𝐴)
mat2pmatfval.p 𝑃 = (Poly1𝑅)
mat2pmatfval.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
mat2pmatfval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
Distinct variable groups:   𝐵,𝑚   𝑥,𝑚,𝑦,𝑁   𝑅,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑚)   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑚)   𝑆(𝑥,𝑦,𝑚)   𝑇(𝑥,𝑦,𝑚)   𝑉(𝑥,𝑦,𝑚)

Proof of Theorem mat2pmatfval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . 2 𝑇 = (𝑁 matToPolyMat 𝑅)
2 df-mat2pmat 22734 . . . 4 matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))))
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦))))))
4 oveq12 7457 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
54fveq2d 6924 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
6 mat2pmatfval.b . . . . . . 7 𝐵 = (Base‘𝐴)
7 mat2pmatfval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
87fveq2i 6923 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
96, 8eqtr2i 2769 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = 𝐵
105, 9eqtrdi 2796 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
11 simpl 482 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
12 2fveq3 6925 . . . . . . . . 9 (𝑟 = 𝑅 → (algSc‘(Poly1𝑟)) = (algSc‘(Poly1𝑅)))
1312adantl 481 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (algSc‘(Poly1𝑟)) = (algSc‘(Poly1𝑅)))
14 mat2pmatfval.s . . . . . . . . 9 𝑆 = (algSc‘𝑃)
15 mat2pmatfval.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
1615fveq2i 6923 . . . . . . . . 9 (algSc‘𝑃) = (algSc‘(Poly1𝑅))
1714, 16eqtr2i 2769 . . . . . . . 8 (algSc‘(Poly1𝑅)) = 𝑆
1813, 17eqtrdi 2796 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (algSc‘(Poly1𝑟)) = 𝑆)
1918fveq1d 6922 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)) = (𝑆‘(𝑥𝑚𝑦)))
2011, 11, 19mpoeq123dv 7525 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))))
2110, 20mpteq12dv 5257 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
2221adantl 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
23 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
24 elex 3509 . . . 4 (𝑅𝑉𝑅 ∈ V)
2524adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
266fvexi 6934 . . . 4 𝐵 ∈ V
27 mptexg 7258 . . . 4 (𝐵 ∈ V → (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))) ∈ V)
2826, 27mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))) ∈ V)
293, 22, 23, 25, 28ovmpod 7602 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 matToPolyMat 𝑅) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
301, 29eqtrid 2792 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  Basecbs 17258  algSccascl 21895  Poly1cpl1 22199   Mat cmat 22432   matToPolyMat cmat2pmat 22731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-mat2pmat 22734
This theorem is referenced by:  mat2pmatval  22751  mat2pmatf  22755  m2cpmf  22769
  Copyright terms: Public domain W3C validator