MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatfval Structured version   Visualization version   GIF version

Theorem mat2pmatfval 22627
Description: Value of the matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐵 = (Base‘𝐴)
mat2pmatfval.p 𝑃 = (Poly1𝑅)
mat2pmatfval.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
mat2pmatfval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
Distinct variable groups:   𝐵,𝑚   𝑥,𝑚,𝑦,𝑁   𝑅,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑚)   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑚)   𝑆(𝑥,𝑦,𝑚)   𝑇(𝑥,𝑦,𝑚)   𝑉(𝑥,𝑦,𝑚)

Proof of Theorem mat2pmatfval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . 2 𝑇 = (𝑁 matToPolyMat 𝑅)
2 df-mat2pmat 22611 . . . 4 matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))))
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦))))))
4 oveq12 7362 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
54fveq2d 6830 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
6 mat2pmatfval.b . . . . . . 7 𝐵 = (Base‘𝐴)
7 mat2pmatfval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
87fveq2i 6829 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
96, 8eqtr2i 2753 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = 𝐵
105, 9eqtrdi 2780 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
11 simpl 482 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
12 2fveq3 6831 . . . . . . . . 9 (𝑟 = 𝑅 → (algSc‘(Poly1𝑟)) = (algSc‘(Poly1𝑅)))
1312adantl 481 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (algSc‘(Poly1𝑟)) = (algSc‘(Poly1𝑅)))
14 mat2pmatfval.s . . . . . . . . 9 𝑆 = (algSc‘𝑃)
15 mat2pmatfval.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
1615fveq2i 6829 . . . . . . . . 9 (algSc‘𝑃) = (algSc‘(Poly1𝑅))
1714, 16eqtr2i 2753 . . . . . . . 8 (algSc‘(Poly1𝑅)) = 𝑆
1813, 17eqtrdi 2780 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (algSc‘(Poly1𝑟)) = 𝑆)
1918fveq1d 6828 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)) = (𝑆‘(𝑥𝑚𝑦)))
2011, 11, 19mpoeq123dv 7428 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))))
2110, 20mpteq12dv 5182 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
2221adantl 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
23 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
24 elex 3459 . . . 4 (𝑅𝑉𝑅 ∈ V)
2524adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
266fvexi 6840 . . . 4 𝐵 ∈ V
27 mptexg 7161 . . . 4 (𝐵 ∈ V → (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))) ∈ V)
2826, 27mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))) ∈ V)
293, 22, 23, 25, 28ovmpod 7505 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 matToPolyMat 𝑅) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
301, 29eqtrid 2776 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176  cfv 6486  (class class class)co 7353  cmpo 7355  Fincfn 8879  Basecbs 17139  algSccascl 21778  Poly1cpl1 22078   Mat cmat 22311   matToPolyMat cmat2pmat 22608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-mat2pmat 22611
This theorem is referenced by:  mat2pmatval  22628  mat2pmatf  22632  m2cpmf  22646
  Copyright terms: Public domain W3C validator