MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatfval Structured version   Visualization version   GIF version

Theorem mat2pmatfval 21259
Description: Value of the matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐵 = (Base‘𝐴)
mat2pmatfval.p 𝑃 = (Poly1𝑅)
mat2pmatfval.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
mat2pmatfval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
Distinct variable groups:   𝐵,𝑚   𝑥,𝑚,𝑦,𝑁   𝑅,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑚)   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑚)   𝑆(𝑥,𝑦,𝑚)   𝑇(𝑥,𝑦,𝑚)   𝑉(𝑥,𝑦,𝑚)

Proof of Theorem mat2pmatfval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . 2 𝑇 = (𝑁 matToPolyMat 𝑅)
2 df-mat2pmat 21243 . . . 4 matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))))
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦))))))
4 oveq12 7154 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
54fveq2d 6667 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
6 mat2pmatfval.b . . . . . . 7 𝐵 = (Base‘𝐴)
7 mat2pmatfval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
87fveq2i 6666 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
96, 8eqtr2i 2842 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = 𝐵
105, 9syl6eq 2869 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
11 simpl 483 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
12 2fveq3 6668 . . . . . . . . 9 (𝑟 = 𝑅 → (algSc‘(Poly1𝑟)) = (algSc‘(Poly1𝑅)))
1312adantl 482 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (algSc‘(Poly1𝑟)) = (algSc‘(Poly1𝑅)))
14 mat2pmatfval.s . . . . . . . . 9 𝑆 = (algSc‘𝑃)
15 mat2pmatfval.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
1615fveq2i 6666 . . . . . . . . 9 (algSc‘𝑃) = (algSc‘(Poly1𝑅))
1714, 16eqtr2i 2842 . . . . . . . 8 (algSc‘(Poly1𝑅)) = 𝑆
1813, 17syl6eq 2869 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (algSc‘(Poly1𝑟)) = 𝑆)
1918fveq1d 6665 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)) = (𝑆‘(𝑥𝑚𝑦)))
2011, 11, 19mpoeq123dv 7218 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))))
2110, 20mpteq12dv 5142 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
2221adantl 482 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
23 simpl 483 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
24 elex 3510 . . . 4 (𝑅𝑉𝑅 ∈ V)
2524adantl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
266fvexi 6677 . . . 4 𝐵 ∈ V
27 mptexg 6975 . . . 4 (𝐵 ∈ V → (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))) ∈ V)
2826, 27mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))) ∈ V)
293, 22, 23, 25, 28ovmpod 7291 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 matToPolyMat 𝑅) = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
301, 29syl5eq 2865 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  cmpt 5137  cfv 6348  (class class class)co 7145  cmpo 7147  Fincfn 8497  Basecbs 16471  algSccascl 20012  Poly1cpl1 20273   Mat cmat 20944   matToPolyMat cmat2pmat 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-mat2pmat 21243
This theorem is referenced by:  mat2pmatval  21260  mat2pmatf  21264  m2cpmf  21278
  Copyright terms: Public domain W3C validator