MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatval Structured version   Visualization version   GIF version

Theorem mat2pmatval 22639
Description: The result of a matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐵 = (Base‘𝐴)
mat2pmatfval.p 𝑃 = (Poly1𝑅)
mat2pmatfval.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
mat2pmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑅,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem mat2pmatval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatfval.b . . . 4 𝐵 = (Base‘𝐴)
4 mat2pmatfval.p . . . 4 𝑃 = (Poly1𝑅)
5 mat2pmatfval.s . . . 4 𝑆 = (algSc‘𝑃)
61, 2, 3, 4, 5mat2pmatfval 22638 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
763adant3 1132 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
8 oveq 7352 . . . . 5 (𝑚 = 𝑀 → (𝑥𝑚𝑦) = (𝑥𝑀𝑦))
98fveq2d 6826 . . . 4 (𝑚 = 𝑀 → (𝑆‘(𝑥𝑚𝑦)) = (𝑆‘(𝑥𝑀𝑦)))
109mpoeq3dv 7425 . . 3 (𝑚 = 𝑀 → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
1110adantl 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
12 simp3 1138 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑀𝐵)
13 simp1 1136 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑁 ∈ Fin)
14 mpoexga 8009 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))) ∈ V)
1513, 13, 14syl2anc 584 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))) ∈ V)
167, 11, 12, 15fvmptd 6936 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5170  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869  Basecbs 17120  algSccascl 21789  Poly1cpl1 22089   Mat cmat 22322   matToPolyMat cmat2pmat 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-mat2pmat 22622
This theorem is referenced by:  mat2pmatvalel  22640  mat2pmatbas  22641  mat2pmatghm  22645  mat2pmatmul  22646  d0mat2pmat  22653  d1mat2pmat  22654  m2cpminvid2  22670  pmatcollpwlem  22695  pmatcollpwscmatlem2  22705
  Copyright terms: Public domain W3C validator