MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatval Structured version   Visualization version   GIF version

Theorem mat2pmatval 22600
Description: The result of a matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐡 = (Baseβ€˜π΄)
mat2pmatfval.p 𝑃 = (Poly1β€˜π‘…)
mat2pmatfval.s 𝑆 = (algScβ€˜π‘ƒ)
Assertion
Ref Expression
mat2pmatval ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ (π‘‡β€˜π‘€) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
Distinct variable groups:   π‘₯,𝑦,𝑁   π‘₯,𝑅,𝑦   π‘₯,𝑀,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)   𝐡(π‘₯,𝑦)   𝑃(π‘₯,𝑦)   𝑆(π‘₯,𝑦)   𝑇(π‘₯,𝑦)   𝑉(π‘₯,𝑦)

Proof of Theorem mat2pmatval
Dummy variable π‘š is distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatfval.b . . . 4 𝐡 = (Baseβ€˜π΄)
4 mat2pmatfval.p . . . 4 𝑃 = (Poly1β€˜π‘…)
5 mat2pmatfval.s . . . 4 𝑆 = (algScβ€˜π‘ƒ)
61, 2, 3, 4, 5mat2pmatfval 22599 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) β†’ 𝑇 = (π‘š ∈ 𝐡 ↦ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯π‘šπ‘¦)))))
763adant3 1130 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ 𝑇 = (π‘š ∈ 𝐡 ↦ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯π‘šπ‘¦)))))
8 oveq 7420 . . . . 5 (π‘š = 𝑀 β†’ (π‘₯π‘šπ‘¦) = (π‘₯𝑀𝑦))
98fveq2d 6895 . . . 4 (π‘š = 𝑀 β†’ (π‘†β€˜(π‘₯π‘šπ‘¦)) = (π‘†β€˜(π‘₯𝑀𝑦)))
109mpoeq3dv 7493 . . 3 (π‘š = 𝑀 β†’ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯π‘šπ‘¦))) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
1110adantl 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ π‘š = 𝑀) β†’ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯π‘šπ‘¦))) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
12 simp3 1136 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ 𝑀 ∈ 𝐡)
13 simp1 1134 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ 𝑁 ∈ Fin)
14 mpoexga 8074 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) β†’ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))) ∈ V)
1513, 13, 14syl2anc 583 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))) ∈ V)
167, 11, 12, 15fvmptd 7006 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ (π‘‡β€˜π‘€) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  Vcvv 3469   ↦ cmpt 5225  β€˜cfv 6542  (class class class)co 7414   ∈ cmpo 7416  Fincfn 8953  Basecbs 17165  algSccascl 21766  Poly1cpl1 22070   Mat cmat 22281   matToPolyMat cmat2pmat 22580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-mat2pmat 22583
This theorem is referenced by:  mat2pmatvalel  22601  mat2pmatbas  22602  mat2pmatghm  22606  mat2pmatmul  22607  d0mat2pmat  22614  d1mat2pmat  22615  m2cpminvid2  22631  pmatcollpwlem  22656  pmatcollpwscmatlem2  22666
  Copyright terms: Public domain W3C validator