MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatval Structured version   Visualization version   GIF version

Theorem mat2pmatval 22225
Description: The result of a matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐡 = (Baseβ€˜π΄)
mat2pmatfval.p 𝑃 = (Poly1β€˜π‘…)
mat2pmatfval.s 𝑆 = (algScβ€˜π‘ƒ)
Assertion
Ref Expression
mat2pmatval ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ (π‘‡β€˜π‘€) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
Distinct variable groups:   π‘₯,𝑦,𝑁   π‘₯,𝑅,𝑦   π‘₯,𝑀,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)   𝐡(π‘₯,𝑦)   𝑃(π‘₯,𝑦)   𝑆(π‘₯,𝑦)   𝑇(π‘₯,𝑦)   𝑉(π‘₯,𝑦)

Proof of Theorem mat2pmatval
Dummy variable π‘š is distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatfval.b . . . 4 𝐡 = (Baseβ€˜π΄)
4 mat2pmatfval.p . . . 4 𝑃 = (Poly1β€˜π‘…)
5 mat2pmatfval.s . . . 4 𝑆 = (algScβ€˜π‘ƒ)
61, 2, 3, 4, 5mat2pmatfval 22224 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) β†’ 𝑇 = (π‘š ∈ 𝐡 ↦ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯π‘šπ‘¦)))))
763adant3 1132 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ 𝑇 = (π‘š ∈ 𝐡 ↦ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯π‘šπ‘¦)))))
8 oveq 7414 . . . . 5 (π‘š = 𝑀 β†’ (π‘₯π‘šπ‘¦) = (π‘₯𝑀𝑦))
98fveq2d 6895 . . . 4 (π‘š = 𝑀 β†’ (π‘†β€˜(π‘₯π‘šπ‘¦)) = (π‘†β€˜(π‘₯𝑀𝑦)))
109mpoeq3dv 7487 . . 3 (π‘š = 𝑀 β†’ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯π‘šπ‘¦))) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
1110adantl 482 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) ∧ π‘š = 𝑀) β†’ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯π‘šπ‘¦))) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
12 simp3 1138 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ 𝑀 ∈ 𝐡)
13 simp1 1136 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ 𝑁 ∈ Fin)
14 mpoexga 8063 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) β†’ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))) ∈ V)
1513, 13, 14syl2anc 584 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))) ∈ V)
167, 11, 12, 15fvmptd 7005 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐡) β†’ (π‘‡β€˜π‘€) = (π‘₯ ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (π‘†β€˜(π‘₯𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  Vcvv 3474   ↦ cmpt 5231  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  Fincfn 8938  Basecbs 17143  algSccascl 21406  Poly1cpl1 21700   Mat cmat 21906   matToPolyMat cmat2pmat 22205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-mat2pmat 22208
This theorem is referenced by:  mat2pmatvalel  22226  mat2pmatbas  22227  mat2pmatghm  22231  mat2pmatmul  22232  d0mat2pmat  22239  d1mat2pmat  22240  m2cpminvid2  22256  pmatcollpwlem  22281  pmatcollpwscmatlem2  22291
  Copyright terms: Public domain W3C validator