![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat2pmatval | Structured version Visualization version GIF version |
Description: The result of a matrix transformation. (Contributed by AV, 31-Jul-2019.) |
Ref | Expression |
---|---|
mat2pmatfval.t | β’ π = (π matToPolyMat π ) |
mat2pmatfval.a | β’ π΄ = (π Mat π ) |
mat2pmatfval.b | β’ π΅ = (Baseβπ΄) |
mat2pmatfval.p | β’ π = (Poly1βπ ) |
mat2pmatfval.s | β’ π = (algScβπ) |
Ref | Expression |
---|---|
mat2pmatval | β’ ((π β Fin β§ π β π β§ π β π΅) β (πβπ) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatfval.t | . . . 4 β’ π = (π matToPolyMat π ) | |
2 | mat2pmatfval.a | . . . 4 β’ π΄ = (π Mat π ) | |
3 | mat2pmatfval.b | . . . 4 β’ π΅ = (Baseβπ΄) | |
4 | mat2pmatfval.p | . . . 4 β’ π = (Poly1βπ ) | |
5 | mat2pmatfval.s | . . . 4 β’ π = (algScβπ) | |
6 | 1, 2, 3, 4, 5 | mat2pmatfval 22599 | . . 3 β’ ((π β Fin β§ π β π) β π = (π β π΅ β¦ (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))))) |
7 | 6 | 3adant3 1130 | . 2 β’ ((π β Fin β§ π β π β§ π β π΅) β π = (π β π΅ β¦ (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))))) |
8 | oveq 7420 | . . . . 5 β’ (π = π β (π₯ππ¦) = (π₯ππ¦)) | |
9 | 8 | fveq2d 6895 | . . . 4 β’ (π = π β (πβ(π₯ππ¦)) = (πβ(π₯ππ¦))) |
10 | 9 | mpoeq3dv 7493 | . . 3 β’ (π = π β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
11 | 10 | adantl 481 | . 2 β’ (((π β Fin β§ π β π β§ π β π΅) β§ π = π) β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
12 | simp3 1136 | . 2 β’ ((π β Fin β§ π β π β§ π β π΅) β π β π΅) | |
13 | simp1 1134 | . . 3 β’ ((π β Fin β§ π β π β§ π β π΅) β π β Fin) | |
14 | mpoexga 8074 | . . 3 β’ ((π β Fin β§ π β Fin) β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) β V) | |
15 | 13, 13, 14 | syl2anc 583 | . 2 β’ ((π β Fin β§ π β π β§ π β π΅) β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) β V) |
16 | 7, 11, 12, 15 | fvmptd 7006 | 1 β’ ((π β Fin β§ π β π β§ π β π΅) β (πβπ) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1534 β wcel 2099 Vcvv 3469 β¦ cmpt 5225 βcfv 6542 (class class class)co 7414 β cmpo 7416 Fincfn 8953 Basecbs 17165 algSccascl 21766 Poly1cpl1 22070 Mat cmat 22281 matToPolyMat cmat2pmat 22580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7985 df-2nd 7986 df-mat2pmat 22583 |
This theorem is referenced by: mat2pmatvalel 22601 mat2pmatbas 22602 mat2pmatghm 22606 mat2pmatmul 22607 d0mat2pmat 22614 d1mat2pmat 22615 m2cpminvid2 22631 pmatcollpwlem 22656 pmatcollpwscmatlem2 22666 |
Copyright terms: Public domain | W3C validator |