![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat2pmatval | Structured version Visualization version GIF version |
Description: The result of a matrix transformation. (Contributed by AV, 31-Jul-2019.) |
Ref | Expression |
---|---|
mat2pmatfval.t | β’ π = (π matToPolyMat π ) |
mat2pmatfval.a | β’ π΄ = (π Mat π ) |
mat2pmatfval.b | β’ π΅ = (Baseβπ΄) |
mat2pmatfval.p | β’ π = (Poly1βπ ) |
mat2pmatfval.s | β’ π = (algScβπ) |
Ref | Expression |
---|---|
mat2pmatval | β’ ((π β Fin β§ π β π β§ π β π΅) β (πβπ) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatfval.t | . . . 4 β’ π = (π matToPolyMat π ) | |
2 | mat2pmatfval.a | . . . 4 β’ π΄ = (π Mat π ) | |
3 | mat2pmatfval.b | . . . 4 β’ π΅ = (Baseβπ΄) | |
4 | mat2pmatfval.p | . . . 4 β’ π = (Poly1βπ ) | |
5 | mat2pmatfval.s | . . . 4 β’ π = (algScβπ) | |
6 | 1, 2, 3, 4, 5 | mat2pmatfval 22224 | . . 3 β’ ((π β Fin β§ π β π) β π = (π β π΅ β¦ (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))))) |
7 | 6 | 3adant3 1132 | . 2 β’ ((π β Fin β§ π β π β§ π β π΅) β π = (π β π΅ β¦ (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))))) |
8 | oveq 7414 | . . . . 5 β’ (π = π β (π₯ππ¦) = (π₯ππ¦)) | |
9 | 8 | fveq2d 6895 | . . . 4 β’ (π = π β (πβ(π₯ππ¦)) = (πβ(π₯ππ¦))) |
10 | 9 | mpoeq3dv 7487 | . . 3 β’ (π = π β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
11 | 10 | adantl 482 | . 2 β’ (((π β Fin β§ π β π β§ π β π΅) β§ π = π) β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
12 | simp3 1138 | . 2 β’ ((π β Fin β§ π β π β§ π β π΅) β π β π΅) | |
13 | simp1 1136 | . . 3 β’ ((π β Fin β§ π β π β§ π β π΅) β π β Fin) | |
14 | mpoexga 8063 | . . 3 β’ ((π β Fin β§ π β Fin) β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) β V) | |
15 | 13, 13, 14 | syl2anc 584 | . 2 β’ ((π β Fin β§ π β π β§ π β π΅) β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) β V) |
16 | 7, 11, 12, 15 | fvmptd 7005 | 1 β’ ((π β Fin β§ π β π β§ π β π΅) β (πβπ) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 β cmpo 7410 Fincfn 8938 Basecbs 17143 algSccascl 21406 Poly1cpl1 21700 Mat cmat 21906 matToPolyMat cmat2pmat 22205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-mat2pmat 22208 |
This theorem is referenced by: mat2pmatvalel 22226 mat2pmatbas 22227 mat2pmatghm 22231 mat2pmatmul 22232 d0mat2pmat 22239 d1mat2pmat 22240 m2cpminvid2 22256 pmatcollpwlem 22281 pmatcollpwscmatlem2 22291 |
Copyright terms: Public domain | W3C validator |