Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatval Structured version   Visualization version   GIF version

Theorem mat2pmatval 21326
 Description: The result of a matrix transformation. (Contributed by AV, 31-Jul-2019.)
Hypotheses
Ref Expression
mat2pmatfval.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatfval.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatfval.b 𝐵 = (Base‘𝐴)
mat2pmatfval.p 𝑃 = (Poly1𝑅)
mat2pmatfval.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
mat2pmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑅,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem mat2pmatval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 mat2pmatfval.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatfval.b . . . 4 𝐵 = (Base‘𝐴)
4 mat2pmatfval.p . . . 4 𝑃 = (Poly1𝑅)
5 mat2pmatfval.s . . . 4 𝑆 = (algSc‘𝑃)
61, 2, 3, 4, 5mat2pmatfval 21325 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
763adant3 1128 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
8 oveq 7156 . . . . 5 (𝑚 = 𝑀 → (𝑥𝑚𝑦) = (𝑥𝑀𝑦))
98fveq2d 6669 . . . 4 (𝑚 = 𝑀 → (𝑆‘(𝑥𝑚𝑦)) = (𝑆‘(𝑥𝑀𝑦)))
109mpoeq3dv 7227 . . 3 (𝑚 = 𝑀 → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
1110adantl 484 . 2 (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ 𝑚 = 𝑀) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
12 simp3 1134 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑀𝐵)
13 simp1 1132 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → 𝑁 ∈ Fin)
14 mpoexga 7769 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))) ∈ V)
1513, 13, 14syl2anc 586 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))) ∈ V)
167, 11, 12, 15fvmptd 6770 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110  Vcvv 3495   ↦ cmpt 5139  ‘cfv 6350  (class class class)co 7150   ∈ cmpo 7152  Fincfn 8503  Basecbs 16477  algSccascl 20078  Poly1cpl1 20339   Mat cmat 21010   matToPolyMat cmat2pmat 21306 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-mat2pmat 21309 This theorem is referenced by:  mat2pmatvalel  21327  mat2pmatbas  21328  mat2pmatghm  21332  mat2pmatmul  21333  d0mat2pmat  21340  d1mat2pmat  21341  m2cpminvid2  21357  pmatcollpwlem  21382  pmatcollpwscmatlem2  21392
 Copyright terms: Public domain W3C validator