![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat2pmatval | Structured version Visualization version GIF version |
Description: The result of a matrix transformation. (Contributed by AV, 31-Jul-2019.) |
Ref | Expression |
---|---|
mat2pmatfval.t | β’ π = (π matToPolyMat π ) |
mat2pmatfval.a | β’ π΄ = (π Mat π ) |
mat2pmatfval.b | β’ π΅ = (Baseβπ΄) |
mat2pmatfval.p | β’ π = (Poly1βπ ) |
mat2pmatfval.s | β’ π = (algScβπ) |
Ref | Expression |
---|---|
mat2pmatval | β’ ((π β Fin β§ π β π β§ π β π΅) β (πβπ) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatfval.t | . . . 4 β’ π = (π matToPolyMat π ) | |
2 | mat2pmatfval.a | . . . 4 β’ π΄ = (π Mat π ) | |
3 | mat2pmatfval.b | . . . 4 β’ π΅ = (Baseβπ΄) | |
4 | mat2pmatfval.p | . . . 4 β’ π = (Poly1βπ ) | |
5 | mat2pmatfval.s | . . . 4 β’ π = (algScβπ) | |
6 | 1, 2, 3, 4, 5 | mat2pmatfval 22641 | . . 3 β’ ((π β Fin β§ π β π) β π = (π β π΅ β¦ (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))))) |
7 | 6 | 3adant3 1129 | . 2 β’ ((π β Fin β§ π β π β§ π β π΅) β π = (π β π΅ β¦ (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))))) |
8 | oveq 7421 | . . . . 5 β’ (π = π β (π₯ππ¦) = (π₯ππ¦)) | |
9 | 8 | fveq2d 6895 | . . . 4 β’ (π = π β (πβ(π₯ππ¦)) = (πβ(π₯ππ¦))) |
10 | 9 | mpoeq3dv 7495 | . . 3 β’ (π = π β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
11 | 10 | adantl 480 | . 2 β’ (((π β Fin β§ π β π β§ π β π΅) β§ π = π) β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
12 | simp3 1135 | . 2 β’ ((π β Fin β§ π β π β§ π β π΅) β π β π΅) | |
13 | simp1 1133 | . . 3 β’ ((π β Fin β§ π β π β§ π β π΅) β π β Fin) | |
14 | mpoexga 8078 | . . 3 β’ ((π β Fin β§ π β Fin) β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) β V) | |
15 | 13, 13, 14 | syl2anc 582 | . 2 β’ ((π β Fin β§ π β π β§ π β π΅) β (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦))) β V) |
16 | 7, 11, 12, 15 | fvmptd 7006 | 1 β’ ((π β Fin β§ π β π β§ π β π΅) β (πβπ) = (π₯ β π, π¦ β π β¦ (πβ(π₯ππ¦)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 Vcvv 3463 β¦ cmpt 5226 βcfv 6542 (class class class)co 7415 β cmpo 7417 Fincfn 8960 Basecbs 17177 algSccascl 21788 Poly1cpl1 22102 Mat cmat 22323 matToPolyMat cmat2pmat 22622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-mat2pmat 22625 |
This theorem is referenced by: mat2pmatvalel 22643 mat2pmatbas 22644 mat2pmatghm 22648 mat2pmatmul 22649 d0mat2pmat 22656 d1mat2pmat 22657 m2cpminvid2 22673 pmatcollpwlem 22698 pmatcollpwscmatlem2 22708 |
Copyright terms: Public domain | W3C validator |