![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat2pmatf | Structured version Visualization version GIF version |
Description: The matrix transformation is a function from the matrices to the polynomial matrices. (Contributed by AV, 27-Oct-2019.) |
Ref | Expression |
---|---|
mat2pmatbas.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
mat2pmatbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mat2pmatbas.b | ⊢ 𝐵 = (Base‘𝐴) |
mat2pmatbas.p | ⊢ 𝑃 = (Poly1‘𝑅) |
mat2pmatbas.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
mat2pmatbas0.h | ⊢ 𝐻 = (Base‘𝐶) |
Ref | Expression |
---|---|
mat2pmatf | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) | |
2 | 1, 1 | jca 511 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
3 | 2 | adantr 480 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
4 | mpoexga 8120 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑥𝑚𝑦))) ∈ V) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑥𝑚𝑦))) ∈ V) |
6 | mat2pmatbas.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
7 | mat2pmatbas.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
8 | mat2pmatbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
9 | mat2pmatbas.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
10 | eqid 2740 | . . 3 ⊢ (algSc‘𝑃) = (algSc‘𝑃) | |
11 | 6, 7, 8, 9, 10 | mat2pmatfval 22752 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 = (𝑚 ∈ 𝐵 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((algSc‘𝑃)‘(𝑥𝑚𝑦))))) |
12 | mat2pmatbas.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
13 | mat2pmatbas0.h | . . . 4 ⊢ 𝐻 = (Base‘𝐶) | |
14 | 6, 7, 8, 9, 12, 13 | mat2pmatbas0 22756 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚 ∈ 𝐵) → (𝑇‘𝑚) ∈ 𝐻) |
15 | 14 | 3expa 1118 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑚 ∈ 𝐵) → (𝑇‘𝑚) ∈ 𝐻) |
16 | 5, 11, 15 | fmpt2d 7160 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 Fincfn 9005 Basecbs 17260 Ringcrg 20262 algSccascl 21897 Poly1cpl1 22201 Mat cmat 22434 matToPolyMat cmat2pmat 22733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-ofr 7717 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-pm 8889 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-sup 9513 df-oi 9581 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-fz 13570 df-fzo 13714 df-seq 14055 df-hash 14382 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-hom 17337 df-cco 17338 df-0g 17503 df-gsum 17504 df-prds 17509 df-pws 17511 df-mre 17646 df-mrc 17647 df-acs 17649 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-mhm 18820 df-submnd 18821 df-grp 18978 df-minusg 18979 df-sbg 18980 df-mulg 19110 df-subg 19165 df-ghm 19255 df-cntz 19359 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-subrng 20574 df-subrg 20599 df-lmod 20884 df-lss 20955 df-sra 21197 df-rgmod 21198 df-dsmm 21777 df-frlm 21792 df-ascl 21900 df-psr 21954 df-mpl 21956 df-opsr 21958 df-psr1 22204 df-ply1 22206 df-mat 22435 df-mat2pmat 22736 |
This theorem is referenced by: mat2pmatf1 22758 mat2pmatghm 22759 mat2pmatmhm 22762 |
Copyright terms: Public domain | W3C validator |