![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmfun | Structured version Visualization version GIF version |
Description: A measurable function is a function. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
Ref | Expression |
---|---|
mbfmfun.1 | β’ (π β πΉ β βͺ ran MblFnM) |
Ref | Expression |
---|---|
mbfmfun | β’ (π β Fun πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmfun.1 | . 2 β’ (π β πΉ β βͺ ran MblFnM) | |
2 | elunirnmbfm 33714 | . . 3 β’ (πΉ β βͺ ran MblFnM β βπ β βͺ ran sigAlgebraβπ‘ β βͺ ran sigAlgebra(πΉ β (βͺ π‘ βm βͺ π ) β§ βπ₯ β π‘ (β‘πΉ β π₯) β π )) | |
3 | 2 | biimpi 215 | . 2 β’ (πΉ β βͺ ran MblFnM β βπ β βͺ ran sigAlgebraβπ‘ β βͺ ran sigAlgebra(πΉ β (βͺ π‘ βm βͺ π ) β§ βπ₯ β π‘ (β‘πΉ β π₯) β π )) |
4 | elmapfun 8866 | . . . . 5 β’ (πΉ β (βͺ π‘ βm βͺ π ) β Fun πΉ) | |
5 | 4 | adantr 480 | . . . 4 β’ ((πΉ β (βͺ π‘ βm βͺ π ) β§ βπ₯ β π‘ (β‘πΉ β π₯) β π ) β Fun πΉ) |
6 | 5 | rexlimivw 3150 | . . 3 β’ (βπ‘ β βͺ ran sigAlgebra(πΉ β (βͺ π‘ βm βͺ π ) β§ βπ₯ β π‘ (β‘πΉ β π₯) β π ) β Fun πΉ) |
7 | 6 | rexlimivw 3150 | . 2 β’ (βπ β βͺ ran sigAlgebraβπ‘ β βͺ ran sigAlgebra(πΉ β (βͺ π‘ βm βͺ π ) β§ βπ₯ β π‘ (β‘πΉ β π₯) β π ) β Fun πΉ) |
8 | 1, 3, 7 | 3syl 18 | 1 β’ (π β Fun πΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β wcel 2105 βwral 3060 βwrex 3069 βͺ cuni 4908 β‘ccnv 5675 ran crn 5677 β cima 5679 Fun wfun 6537 (class class class)co 7412 βm cmap 8826 sigAlgebracsiga 33570 MblFnMcmbfm 33711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-map 8828 df-mbfm 33712 |
This theorem is referenced by: orvcval4 33923 |
Copyright terms: Public domain | W3C validator |