![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmfun | Structured version Visualization version GIF version |
Description: A measurable function is a function. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
Ref | Expression |
---|---|
mbfmfun.1 | ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) |
Ref | Expression |
---|---|
mbfmfun | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmfun.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ ∪ ran MblFnM) | |
2 | elunirnmbfm 30856 | . . 3 ⊢ (𝐹 ∈ ∪ ran MblFnM ↔ ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) | |
3 | 2 | biimpi 208 | . 2 ⊢ (𝐹 ∈ ∪ ran MblFnM → ∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠)) |
4 | elmapfun 8151 | . . . . 5 ⊢ (𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) → Fun 𝐹) | |
5 | 4 | adantr 474 | . . . 4 ⊢ ((𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠) → Fun 𝐹) |
6 | 5 | rexlimivw 3238 | . . 3 ⊢ (∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠) → Fun 𝐹) |
7 | 6 | rexlimivw 3238 | . 2 ⊢ (∃𝑠 ∈ ∪ ran sigAlgebra∃𝑡 ∈ ∪ ran sigAlgebra(𝐹 ∈ (∪ 𝑡 ↑𝑚 ∪ 𝑠) ∧ ∀𝑥 ∈ 𝑡 (◡𝐹 “ 𝑥) ∈ 𝑠) → Fun 𝐹) |
8 | 1, 3, 7 | 3syl 18 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2164 ∀wral 3117 ∃wrex 3118 ∪ cuni 4660 ◡ccnv 5345 ran crn 5347 “ cima 5349 Fun wfun 6121 (class class class)co 6910 ↑𝑚 cmap 8127 sigAlgebracsiga 30711 MblFnMcmbfm 30853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-map 8129 df-mbfm 30854 |
This theorem is referenced by: orvcval4 31064 |
Copyright terms: Public domain | W3C validator |