Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmfun Structured version   Visualization version   GIF version

Theorem mbfmfun 33715
Description: A measurable function is a function. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Hypothesis
Ref Expression
mbfmfun.1 (πœ‘ β†’ 𝐹 ∈ βˆͺ ran MblFnM)
Assertion
Ref Expression
mbfmfun (πœ‘ β†’ Fun 𝐹)

Proof of Theorem mbfmfun
Dummy variables 𝑑 𝑠 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmfun.1 . 2 (πœ‘ β†’ 𝐹 ∈ βˆͺ ran MblFnM)
2 elunirnmbfm 33714 . . 3 (𝐹 ∈ βˆͺ ran MblFnM ↔ βˆƒπ‘  ∈ βˆͺ ran sigAlgebraβˆƒπ‘‘ ∈ βˆͺ ran sigAlgebra(𝐹 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∧ βˆ€π‘₯ ∈ 𝑑 (◑𝐹 β€œ π‘₯) ∈ 𝑠))
32biimpi 215 . 2 (𝐹 ∈ βˆͺ ran MblFnM β†’ βˆƒπ‘  ∈ βˆͺ ran sigAlgebraβˆƒπ‘‘ ∈ βˆͺ ran sigAlgebra(𝐹 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∧ βˆ€π‘₯ ∈ 𝑑 (◑𝐹 β€œ π‘₯) ∈ 𝑠))
4 elmapfun 8866 . . . . 5 (𝐹 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) β†’ Fun 𝐹)
54adantr 480 . . . 4 ((𝐹 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∧ βˆ€π‘₯ ∈ 𝑑 (◑𝐹 β€œ π‘₯) ∈ 𝑠) β†’ Fun 𝐹)
65rexlimivw 3150 . . 3 (βˆƒπ‘‘ ∈ βˆͺ ran sigAlgebra(𝐹 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∧ βˆ€π‘₯ ∈ 𝑑 (◑𝐹 β€œ π‘₯) ∈ 𝑠) β†’ Fun 𝐹)
76rexlimivw 3150 . 2 (βˆƒπ‘  ∈ βˆͺ ran sigAlgebraβˆƒπ‘‘ ∈ βˆͺ ran sigAlgebra(𝐹 ∈ (βˆͺ 𝑑 ↑m βˆͺ 𝑠) ∧ βˆ€π‘₯ ∈ 𝑑 (◑𝐹 β€œ π‘₯) ∈ 𝑠) β†’ Fun 𝐹)
81, 3, 73syl 18 1 (πœ‘ β†’ Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069  βˆͺ cuni 4908  β—‘ccnv 5675  ran crn 5677   β€œ cima 5679  Fun wfun 6537  (class class class)co 7412   ↑m cmap 8826  sigAlgebracsiga 33570  MblFnMcmbfm 33711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-map 8828  df-mbfm 33712
This theorem is referenced by:  orvcval4  33923
  Copyright terms: Public domain W3C validator