Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmfun Structured version   Visualization version   GIF version

Theorem mbfmfun 32517
Description: A measurable function is a function. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Hypothesis
Ref Expression
mbfmfun.1 (𝜑𝐹 ran MblFnM)
Assertion
Ref Expression
mbfmfun (𝜑 → Fun 𝐹)

Proof of Theorem mbfmfun
Dummy variables 𝑡 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfmfun.1 . 2 (𝜑𝐹 ran MblFnM)
2 elunirnmbfm 32516 . . 3 (𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
32biimpi 215 . 2 (𝐹 ran MblFnM → ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
4 elmapfun 8730 . . . . 5 (𝐹 ∈ ( 𝑡m 𝑠) → Fun 𝐹)
54adantr 482 . . . 4 ((𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠) → Fun 𝐹)
65rexlimivw 3145 . . 3 (∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠) → Fun 𝐹)
76rexlimivw 3145 . 2 (∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠) → Fun 𝐹)
81, 3, 73syl 18 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2106  wral 3062  wrex 3071   cuni 4857  ccnv 5624  ran crn 5626  cima 5628  Fun wfun 6478  (class class class)co 7342  m cmap 8691  sigAlgebracsiga 32372  MblFnMcmbfm 32513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-fv 6492  df-ov 7345  df-oprab 7346  df-mpo 7347  df-1st 7904  df-2nd 7905  df-map 8693  df-mbfm 32514
This theorem is referenced by:  orvcval4  32725
  Copyright terms: Public domain W3C validator