| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapfun | Structured version Visualization version GIF version | ||
| Description: A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| Ref | Expression |
|---|---|
| elmapfun | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → Fun 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8863 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
| 2 | 1 | ffund 6710 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → Fun 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Fun wfun 6525 (class class class)co 7405 ↑m cmap 8840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 |
| This theorem is referenced by: mndpsuppss 18743 fsfnn0gsumfsffz 19964 frlmbas 21715 islindf4 21798 ltbwe 22002 mbfmfun 34284 eulerpartgbij 34404 uncf 37623 pwfi2f1o 43120 hoicvr 46577 ovnovollem1 46685 ovnovollem2 46686 domnmsuppn0 48344 rmsuppss 48345 scmsuppss 48346 lincext2 48431 |
| Copyright terms: Public domain | W3C validator |