![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmapfun | Structured version Visualization version GIF version |
Description: A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
elmapfun | ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → Fun 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8145 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | 1 | ffund 6283 | 1 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → Fun 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 Fun wfun 6118 (class class class)co 6906 ↑𝑚 cmap 8123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-1st 7429 df-2nd 7430 df-map 8125 |
This theorem is referenced by: fsfnn0gsumfsffz 18733 ltbwe 19834 frlmbas 20463 islindf4 20545 mbfmfun 30862 eulerpartgbij 30980 uncf 33932 pwfi2f1o 38510 hoicvr 41557 ovnovollem1 41665 ovnovollem2 41666 domnmsuppn0 42998 rmsuppss 42999 mndpsuppss 43000 scmsuppss 43001 lincext2 43092 |
Copyright terms: Public domain | W3C validator |