MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapfun Structured version   Visualization version   GIF version

Theorem elmapfun 8924
Description: A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Assertion
Ref Expression
elmapfun (𝐴 ∈ (𝐵m 𝐶) → Fun 𝐴)

Proof of Theorem elmapfun
StepHypRef Expression
1 elmapi 8907 . 2 (𝐴 ∈ (𝐵m 𝐶) → 𝐴:𝐶𝐵)
21ffund 6751 1 (𝐴 ∈ (𝐵m 𝐶) → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Fun wfun 6567  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by:  fsfnn0gsumfsffz  20025  frlmbas  21798  islindf4  21881  ltbwe  22085  mbfmfun  34217  eulerpartgbij  34337  uncf  37559  pwfi2f1o  43053  hoicvr  46469  ovnovollem1  46577  ovnovollem2  46578  domnmsuppn0  48094  rmsuppss  48095  mndpsuppss  48096  scmsuppss  48097  lincext2  48184
  Copyright terms: Public domain W3C validator