Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elmapfun | Structured version Visualization version GIF version |
Description: A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
elmapfun | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → Fun 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8637 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | 1 | ffund 6604 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → Fun 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Fun wfun 6427 (class class class)co 7275 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: fsfnn0gsumfsffz 19584 frlmbas 20962 islindf4 21045 ltbwe 21245 mbfmfun 32221 eulerpartgbij 32339 uncf 35756 pwfi2f1o 40921 hoicvr 44086 ovnovollem1 44194 ovnovollem2 44195 domnmsuppn0 45705 rmsuppss 45706 mndpsuppss 45707 scmsuppss 45708 lincext2 45796 |
Copyright terms: Public domain | W3C validator |