Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elmapfun | Structured version Visualization version GIF version |
Description: A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
Ref | Expression |
---|---|
elmapfun | ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → Fun 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8687 | . 2 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | 1 | ffund 6642 | 1 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → Fun 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Fun wfun 6460 (class class class)co 7317 ↑m cmap 8665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-fv 6474 df-ov 7320 df-oprab 7321 df-mpo 7322 df-1st 7878 df-2nd 7879 df-map 8667 |
This theorem is referenced by: fsfnn0gsumfsffz 19659 frlmbas 21045 islindf4 21128 ltbwe 21328 mbfmfun 32361 eulerpartgbij 32479 uncf 35828 pwfi2f1o 41138 hoicvr 44337 ovnovollem1 44445 ovnovollem2 44446 domnmsuppn0 45970 rmsuppss 45971 mndpsuppss 45972 scmsuppss 45973 lincext2 46061 |
Copyright terms: Public domain | W3C validator |