| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mexval2 | Structured version Visualization version GIF version | ||
| Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a list of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mexval.k | ⊢ 𝐾 = (mTC‘𝑇) |
| mexval.e | ⊢ 𝐸 = (mEx‘𝑇) |
| mexval2.c | ⊢ 𝐶 = (mCN‘𝑇) |
| mexval2.v | ⊢ 𝑉 = (mVR‘𝑇) |
| Ref | Expression |
|---|---|
| mexval2 | ⊢ 𝐸 = (𝐾 × Word (𝐶 ∪ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mexval.k | . . . 4 ⊢ 𝐾 = (mTC‘𝑇) | |
| 2 | mexval.e | . . . 4 ⊢ 𝐸 = (mEx‘𝑇) | |
| 3 | eqid 2733 | . . . 4 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
| 4 | 1, 2, 3 | mexval 35557 | . . 3 ⊢ 𝐸 = (𝐾 × (mREx‘𝑇)) |
| 5 | mexval2.c | . . . . 5 ⊢ 𝐶 = (mCN‘𝑇) | |
| 6 | mexval2.v | . . . . 5 ⊢ 𝑉 = (mVR‘𝑇) | |
| 7 | 5, 6, 3 | mrexval 35556 | . . . 4 ⊢ (𝑇 ∈ V → (mREx‘𝑇) = Word (𝐶 ∪ 𝑉)) |
| 8 | 7 | xpeq2d 5651 | . . 3 ⊢ (𝑇 ∈ V → (𝐾 × (mREx‘𝑇)) = (𝐾 × Word (𝐶 ∪ 𝑉))) |
| 9 | 4, 8 | eqtrid 2780 | . 2 ⊢ (𝑇 ∈ V → 𝐸 = (𝐾 × Word (𝐶 ∪ 𝑉))) |
| 10 | 0xp 5720 | . . . 4 ⊢ (∅ × Word (𝐶 ∪ 𝑉)) = ∅ | |
| 11 | 10 | eqcomi 2742 | . . 3 ⊢ ∅ = (∅ × Word (𝐶 ∪ 𝑉)) |
| 12 | fvprc 6823 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mEx‘𝑇) = ∅) | |
| 13 | 2, 12 | eqtrid 2780 | . . 3 ⊢ (¬ 𝑇 ∈ V → 𝐸 = ∅) |
| 14 | fvprc 6823 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (mTC‘𝑇) = ∅) | |
| 15 | 1, 14 | eqtrid 2780 | . . . 4 ⊢ (¬ 𝑇 ∈ V → 𝐾 = ∅) |
| 16 | 15 | xpeq1d 5650 | . . 3 ⊢ (¬ 𝑇 ∈ V → (𝐾 × Word (𝐶 ∪ 𝑉)) = (∅ × Word (𝐶 ∪ 𝑉))) |
| 17 | 11, 13, 16 | 3eqtr4a 2794 | . 2 ⊢ (¬ 𝑇 ∈ V → 𝐸 = (𝐾 × Word (𝐶 ∪ 𝑉))) |
| 18 | 9, 17 | pm2.61i 182 | 1 ⊢ 𝐸 = (𝐾 × Word (𝐶 ∪ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ∪ cun 3897 ∅c0 4284 × cxp 5619 ‘cfv 6489 Word cword 14430 mCNcmcn 35515 mVRcmvar 35516 mTCcmtc 35519 mRExcmrex 35521 mExcmex 35522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-fzo 13565 df-hash 14248 df-word 14431 df-mrex 35541 df-mex 35542 |
| This theorem is referenced by: mvrsfpw 35561 |
| Copyright terms: Public domain | W3C validator |