Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mexval Structured version   Visualization version   GIF version

Theorem mexval 35514
Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mexval.k 𝐾 = (mTC‘𝑇)
mexval.e 𝐸 = (mEx‘𝑇)
mexval.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mexval 𝐸 = (𝐾 × 𝑅)

Proof of Theorem mexval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mexval.e . 2 𝐸 = (mEx‘𝑇)
2 fveq2 6817 . . . . . 6 (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇))
3 mexval.k . . . . . 6 𝐾 = (mTC‘𝑇)
42, 3eqtr4di 2783 . . . . 5 (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾)
5 fveq2 6817 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
6 mexval.r . . . . . 6 𝑅 = (mREx‘𝑇)
75, 6eqtr4di 2783 . . . . 5 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
84, 7xpeq12d 5645 . . . 4 (𝑡 = 𝑇 → ((mTC‘𝑡) × (mREx‘𝑡)) = (𝐾 × 𝑅))
9 df-mex 35499 . . . 4 mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡)))
10 fvex 6830 . . . . 5 (mTC‘𝑡) ∈ V
11 fvex 6830 . . . . 5 (mREx‘𝑡) ∈ V
1210, 11xpex 7681 . . . 4 ((mTC‘𝑡) × (mREx‘𝑡)) ∈ V
138, 9, 12fvmpt3i 6929 . . 3 (𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅))
14 xp0 6102 . . . . 5 (𝐾 × ∅) = ∅
1514eqcomi 2739 . . . 4 ∅ = (𝐾 × ∅)
16 fvprc 6809 . . . 4 𝑇 ∈ V → (mEx‘𝑇) = ∅)
17 fvprc 6809 . . . . . 6 𝑇 ∈ V → (mREx‘𝑇) = ∅)
186, 17eqtrid 2777 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
1918xpeq2d 5644 . . . 4 𝑇 ∈ V → (𝐾 × 𝑅) = (𝐾 × ∅))
2015, 16, 193eqtr4a 2791 . . 3 𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅))
2113, 20pm2.61i 182 . 2 (mEx‘𝑇) = (𝐾 × 𝑅)
221, 21eqtri 2753 1 𝐸 = (𝐾 × 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2110  Vcvv 3434  c0 4281   × cxp 5612  cfv 6477  mTCcmtc 35476  mRExcmrex 35478  mExcmex 35479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-mex 35499
This theorem is referenced by:  mexval2  35515  msubff  35542  msubco  35543  msubff1  35568  mvhf  35570  msubvrs  35572
  Copyright terms: Public domain W3C validator