Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mexval Structured version   Visualization version   GIF version

Theorem mexval 35489
Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mexval.k 𝐾 = (mTC‘𝑇)
mexval.e 𝐸 = (mEx‘𝑇)
mexval.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mexval 𝐸 = (𝐾 × 𝑅)

Proof of Theorem mexval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mexval.e . 2 𝐸 = (mEx‘𝑇)
2 fveq2 6858 . . . . . 6 (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇))
3 mexval.k . . . . . 6 𝐾 = (mTC‘𝑇)
42, 3eqtr4di 2782 . . . . 5 (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾)
5 fveq2 6858 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
6 mexval.r . . . . . 6 𝑅 = (mREx‘𝑇)
75, 6eqtr4di 2782 . . . . 5 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
84, 7xpeq12d 5669 . . . 4 (𝑡 = 𝑇 → ((mTC‘𝑡) × (mREx‘𝑡)) = (𝐾 × 𝑅))
9 df-mex 35474 . . . 4 mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡)))
10 fvex 6871 . . . . 5 (mTC‘𝑡) ∈ V
11 fvex 6871 . . . . 5 (mREx‘𝑡) ∈ V
1210, 11xpex 7729 . . . 4 ((mTC‘𝑡) × (mREx‘𝑡)) ∈ V
138, 9, 12fvmpt3i 6973 . . 3 (𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅))
14 xp0 6131 . . . . 5 (𝐾 × ∅) = ∅
1514eqcomi 2738 . . . 4 ∅ = (𝐾 × ∅)
16 fvprc 6850 . . . 4 𝑇 ∈ V → (mEx‘𝑇) = ∅)
17 fvprc 6850 . . . . . 6 𝑇 ∈ V → (mREx‘𝑇) = ∅)
186, 17eqtrid 2776 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
1918xpeq2d 5668 . . . 4 𝑇 ∈ V → (𝐾 × 𝑅) = (𝐾 × ∅))
2015, 16, 193eqtr4a 2790 . . 3 𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅))
2113, 20pm2.61i 182 . 2 (mEx‘𝑇) = (𝐾 × 𝑅)
221, 21eqtri 2752 1 𝐸 = (𝐾 × 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296   × cxp 5636  cfv 6511  mTCcmtc 35451  mRExcmrex 35453  mExcmex 35454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-mex 35474
This theorem is referenced by:  mexval2  35490  msubff  35517  msubco  35518  msubff1  35543  mvhf  35545  msubvrs  35547
  Copyright terms: Public domain W3C validator