Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mexval Structured version   Visualization version   GIF version

Theorem mexval 35496
Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mexval.k 𝐾 = (mTC‘𝑇)
mexval.e 𝐸 = (mEx‘𝑇)
mexval.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mexval 𝐸 = (𝐾 × 𝑅)

Proof of Theorem mexval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mexval.e . 2 𝐸 = (mEx‘𝑇)
2 fveq2 6861 . . . . . 6 (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇))
3 mexval.k . . . . . 6 𝐾 = (mTC‘𝑇)
42, 3eqtr4di 2783 . . . . 5 (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾)
5 fveq2 6861 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
6 mexval.r . . . . . 6 𝑅 = (mREx‘𝑇)
75, 6eqtr4di 2783 . . . . 5 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
84, 7xpeq12d 5672 . . . 4 (𝑡 = 𝑇 → ((mTC‘𝑡) × (mREx‘𝑡)) = (𝐾 × 𝑅))
9 df-mex 35481 . . . 4 mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡)))
10 fvex 6874 . . . . 5 (mTC‘𝑡) ∈ V
11 fvex 6874 . . . . 5 (mREx‘𝑡) ∈ V
1210, 11xpex 7732 . . . 4 ((mTC‘𝑡) × (mREx‘𝑡)) ∈ V
138, 9, 12fvmpt3i 6976 . . 3 (𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅))
14 xp0 6134 . . . . 5 (𝐾 × ∅) = ∅
1514eqcomi 2739 . . . 4 ∅ = (𝐾 × ∅)
16 fvprc 6853 . . . 4 𝑇 ∈ V → (mEx‘𝑇) = ∅)
17 fvprc 6853 . . . . . 6 𝑇 ∈ V → (mREx‘𝑇) = ∅)
186, 17eqtrid 2777 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
1918xpeq2d 5671 . . . 4 𝑇 ∈ V → (𝐾 × 𝑅) = (𝐾 × ∅))
2015, 16, 193eqtr4a 2791 . . 3 𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅))
2113, 20pm2.61i 182 . 2 (mEx‘𝑇) = (𝐾 × 𝑅)
221, 21eqtri 2753 1 𝐸 = (𝐾 × 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299   × cxp 5639  cfv 6514  mTCcmtc 35458  mRExcmrex 35460  mExcmex 35461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-mex 35481
This theorem is referenced by:  mexval2  35497  msubff  35524  msubco  35525  msubff1  35550  mvhf  35552  msubvrs  35554
  Copyright terms: Public domain W3C validator