Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mexval | Structured version Visualization version GIF version |
Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mexval.k | ⊢ 𝐾 = (mTC‘𝑇) |
mexval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mexval.r | ⊢ 𝑅 = (mREx‘𝑇) |
Ref | Expression |
---|---|
mexval | ⊢ 𝐸 = (𝐾 × 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mexval.e | . 2 ⊢ 𝐸 = (mEx‘𝑇) | |
2 | fveq2 6776 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇)) | |
3 | mexval.k | . . . . . 6 ⊢ 𝐾 = (mTC‘𝑇) | |
4 | 2, 3 | eqtr4di 2796 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾) |
5 | fveq2 6776 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇)) | |
6 | mexval.r | . . . . . 6 ⊢ 𝑅 = (mREx‘𝑇) | |
7 | 5, 6 | eqtr4di 2796 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅) |
8 | 4, 7 | xpeq12d 5622 | . . . 4 ⊢ (𝑡 = 𝑇 → ((mTC‘𝑡) × (mREx‘𝑡)) = (𝐾 × 𝑅)) |
9 | df-mex 33446 | . . . 4 ⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | |
10 | fvex 6789 | . . . . 5 ⊢ (mTC‘𝑡) ∈ V | |
11 | fvex 6789 | . . . . 5 ⊢ (mREx‘𝑡) ∈ V | |
12 | 10, 11 | xpex 7603 | . . . 4 ⊢ ((mTC‘𝑡) × (mREx‘𝑡)) ∈ V |
13 | 8, 9, 12 | fvmpt3i 6882 | . . 3 ⊢ (𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅)) |
14 | xp0 6063 | . . . . 5 ⊢ (𝐾 × ∅) = ∅ | |
15 | 14 | eqcomi 2747 | . . . 4 ⊢ ∅ = (𝐾 × ∅) |
16 | fvprc 6768 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mEx‘𝑇) = ∅) | |
17 | fvprc 6768 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mREx‘𝑇) = ∅) | |
18 | 6, 17 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
19 | 18 | xpeq2d 5621 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (𝐾 × 𝑅) = (𝐾 × ∅)) |
20 | 15, 16, 19 | 3eqtr4a 2804 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅)) |
21 | 13, 20 | pm2.61i 182 | . 2 ⊢ (mEx‘𝑇) = (𝐾 × 𝑅) |
22 | 1, 21 | eqtri 2766 | 1 ⊢ 𝐸 = (𝐾 × 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3431 ∅c0 4258 × cxp 5589 ‘cfv 6435 mTCcmtc 33423 mRExcmrex 33425 mExcmex 33426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6393 df-fun 6437 df-fv 6443 df-mex 33446 |
This theorem is referenced by: mexval2 33462 msubff 33489 msubco 33490 msubff1 33515 mvhf 33517 msubvrs 33519 |
Copyright terms: Public domain | W3C validator |