| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mexval | Structured version Visualization version GIF version | ||
| Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mexval.k | ⊢ 𝐾 = (mTC‘𝑇) |
| mexval.e | ⊢ 𝐸 = (mEx‘𝑇) |
| mexval.r | ⊢ 𝑅 = (mREx‘𝑇) |
| Ref | Expression |
|---|---|
| mexval | ⊢ 𝐸 = (𝐾 × 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mexval.e | . 2 ⊢ 𝐸 = (mEx‘𝑇) | |
| 2 | fveq2 6817 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇)) | |
| 3 | mexval.k | . . . . . 6 ⊢ 𝐾 = (mTC‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾) |
| 5 | fveq2 6817 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇)) | |
| 6 | mexval.r | . . . . . 6 ⊢ 𝑅 = (mREx‘𝑇) | |
| 7 | 5, 6 | eqtr4di 2783 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅) |
| 8 | 4, 7 | xpeq12d 5645 | . . . 4 ⊢ (𝑡 = 𝑇 → ((mTC‘𝑡) × (mREx‘𝑡)) = (𝐾 × 𝑅)) |
| 9 | df-mex 35499 | . . . 4 ⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | |
| 10 | fvex 6830 | . . . . 5 ⊢ (mTC‘𝑡) ∈ V | |
| 11 | fvex 6830 | . . . . 5 ⊢ (mREx‘𝑡) ∈ V | |
| 12 | 10, 11 | xpex 7681 | . . . 4 ⊢ ((mTC‘𝑡) × (mREx‘𝑡)) ∈ V |
| 13 | 8, 9, 12 | fvmpt3i 6929 | . . 3 ⊢ (𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅)) |
| 14 | xp0 6102 | . . . . 5 ⊢ (𝐾 × ∅) = ∅ | |
| 15 | 14 | eqcomi 2739 | . . . 4 ⊢ ∅ = (𝐾 × ∅) |
| 16 | fvprc 6809 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mEx‘𝑇) = ∅) | |
| 17 | fvprc 6809 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mREx‘𝑇) = ∅) | |
| 18 | 6, 17 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
| 19 | 18 | xpeq2d 5644 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (𝐾 × 𝑅) = (𝐾 × ∅)) |
| 20 | 15, 16, 19 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅)) |
| 21 | 13, 20 | pm2.61i 182 | . 2 ⊢ (mEx‘𝑇) = (𝐾 × 𝑅) |
| 22 | 1, 21 | eqtri 2753 | 1 ⊢ 𝐸 = (𝐾 × 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∅c0 4281 × cxp 5612 ‘cfv 6477 mTCcmtc 35476 mRExcmrex 35478 mExcmex 35479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-mex 35499 |
| This theorem is referenced by: mexval2 35515 msubff 35542 msubco 35543 msubff1 35568 mvhf 35570 msubvrs 35572 |
| Copyright terms: Public domain | W3C validator |