| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mexval | Structured version Visualization version GIF version | ||
| Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mexval.k | ⊢ 𝐾 = (mTC‘𝑇) |
| mexval.e | ⊢ 𝐸 = (mEx‘𝑇) |
| mexval.r | ⊢ 𝑅 = (mREx‘𝑇) |
| Ref | Expression |
|---|---|
| mexval | ⊢ 𝐸 = (𝐾 × 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mexval.e | . 2 ⊢ 𝐸 = (mEx‘𝑇) | |
| 2 | fveq2 6861 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇)) | |
| 3 | mexval.k | . . . . . 6 ⊢ 𝐾 = (mTC‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾) |
| 5 | fveq2 6861 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇)) | |
| 6 | mexval.r | . . . . . 6 ⊢ 𝑅 = (mREx‘𝑇) | |
| 7 | 5, 6 | eqtr4di 2783 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅) |
| 8 | 4, 7 | xpeq12d 5672 | . . . 4 ⊢ (𝑡 = 𝑇 → ((mTC‘𝑡) × (mREx‘𝑡)) = (𝐾 × 𝑅)) |
| 9 | df-mex 35481 | . . . 4 ⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | |
| 10 | fvex 6874 | . . . . 5 ⊢ (mTC‘𝑡) ∈ V | |
| 11 | fvex 6874 | . . . . 5 ⊢ (mREx‘𝑡) ∈ V | |
| 12 | 10, 11 | xpex 7732 | . . . 4 ⊢ ((mTC‘𝑡) × (mREx‘𝑡)) ∈ V |
| 13 | 8, 9, 12 | fvmpt3i 6976 | . . 3 ⊢ (𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅)) |
| 14 | xp0 6134 | . . . . 5 ⊢ (𝐾 × ∅) = ∅ | |
| 15 | 14 | eqcomi 2739 | . . . 4 ⊢ ∅ = (𝐾 × ∅) |
| 16 | fvprc 6853 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mEx‘𝑇) = ∅) | |
| 17 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mREx‘𝑇) = ∅) | |
| 18 | 6, 17 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
| 19 | 18 | xpeq2d 5671 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (𝐾 × 𝑅) = (𝐾 × ∅)) |
| 20 | 15, 16, 19 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅)) |
| 21 | 13, 20 | pm2.61i 182 | . 2 ⊢ (mEx‘𝑇) = (𝐾 × 𝑅) |
| 22 | 1, 21 | eqtri 2753 | 1 ⊢ 𝐸 = (𝐾 × 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 × cxp 5639 ‘cfv 6514 mTCcmtc 35458 mRExcmrex 35460 mExcmex 35461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-mex 35481 |
| This theorem is referenced by: mexval2 35497 msubff 35524 msubco 35525 msubff1 35550 mvhf 35552 msubvrs 35554 |
| Copyright terms: Public domain | W3C validator |