Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mexval Structured version   Visualization version   GIF version

Theorem mexval 33464
Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mexval.k 𝐾 = (mTC‘𝑇)
mexval.e 𝐸 = (mEx‘𝑇)
mexval.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mexval 𝐸 = (𝐾 × 𝑅)

Proof of Theorem mexval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mexval.e . 2 𝐸 = (mEx‘𝑇)
2 fveq2 6774 . . . . . 6 (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇))
3 mexval.k . . . . . 6 𝐾 = (mTC‘𝑇)
42, 3eqtr4di 2796 . . . . 5 (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾)
5 fveq2 6774 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
6 mexval.r . . . . . 6 𝑅 = (mREx‘𝑇)
75, 6eqtr4di 2796 . . . . 5 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
84, 7xpeq12d 5620 . . . 4 (𝑡 = 𝑇 → ((mTC‘𝑡) × (mREx‘𝑡)) = (𝐾 × 𝑅))
9 df-mex 33449 . . . 4 mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡)))
10 fvex 6787 . . . . 5 (mTC‘𝑡) ∈ V
11 fvex 6787 . . . . 5 (mREx‘𝑡) ∈ V
1210, 11xpex 7603 . . . 4 ((mTC‘𝑡) × (mREx‘𝑡)) ∈ V
138, 9, 12fvmpt3i 6880 . . 3 (𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅))
14 xp0 6061 . . . . 5 (𝐾 × ∅) = ∅
1514eqcomi 2747 . . . 4 ∅ = (𝐾 × ∅)
16 fvprc 6766 . . . 4 𝑇 ∈ V → (mEx‘𝑇) = ∅)
17 fvprc 6766 . . . . . 6 𝑇 ∈ V → (mREx‘𝑇) = ∅)
186, 17eqtrid 2790 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
1918xpeq2d 5619 . . . 4 𝑇 ∈ V → (𝐾 × 𝑅) = (𝐾 × ∅))
2015, 16, 193eqtr4a 2804 . . 3 𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅))
2113, 20pm2.61i 182 . 2 (mEx‘𝑇) = (𝐾 × 𝑅)
221, 21eqtri 2766 1 𝐸 = (𝐾 × 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256   × cxp 5587  cfv 6433  mTCcmtc 33426  mRExcmrex 33428  mExcmex 33429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-mex 33449
This theorem is referenced by:  mexval2  33465  msubff  33492  msubco  33493  msubff1  33518  mvhf  33520  msubvrs  33522
  Copyright terms: Public domain W3C validator