![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mexval | Structured version Visualization version GIF version |
Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mexval.k | β’ πΎ = (mTCβπ) |
mexval.e | β’ πΈ = (mExβπ) |
mexval.r | β’ π = (mRExβπ) |
Ref | Expression |
---|---|
mexval | β’ πΈ = (πΎ Γ π ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mexval.e | . 2 β’ πΈ = (mExβπ) | |
2 | fveq2 6846 | . . . . . 6 β’ (π‘ = π β (mTCβπ‘) = (mTCβπ)) | |
3 | mexval.k | . . . . . 6 β’ πΎ = (mTCβπ) | |
4 | 2, 3 | eqtr4di 2791 | . . . . 5 β’ (π‘ = π β (mTCβπ‘) = πΎ) |
5 | fveq2 6846 | . . . . . 6 β’ (π‘ = π β (mRExβπ‘) = (mRExβπ)) | |
6 | mexval.r | . . . . . 6 β’ π = (mRExβπ) | |
7 | 5, 6 | eqtr4di 2791 | . . . . 5 β’ (π‘ = π β (mRExβπ‘) = π ) |
8 | 4, 7 | xpeq12d 5668 | . . . 4 β’ (π‘ = π β ((mTCβπ‘) Γ (mRExβπ‘)) = (πΎ Γ π )) |
9 | df-mex 34145 | . . . 4 β’ mEx = (π‘ β V β¦ ((mTCβπ‘) Γ (mRExβπ‘))) | |
10 | fvex 6859 | . . . . 5 β’ (mTCβπ‘) β V | |
11 | fvex 6859 | . . . . 5 β’ (mRExβπ‘) β V | |
12 | 10, 11 | xpex 7691 | . . . 4 β’ ((mTCβπ‘) Γ (mRExβπ‘)) β V |
13 | 8, 9, 12 | fvmpt3i 6957 | . . 3 β’ (π β V β (mExβπ) = (πΎ Γ π )) |
14 | xp0 6114 | . . . . 5 β’ (πΎ Γ β ) = β | |
15 | 14 | eqcomi 2742 | . . . 4 β’ β = (πΎ Γ β ) |
16 | fvprc 6838 | . . . 4 β’ (Β¬ π β V β (mExβπ) = β ) | |
17 | fvprc 6838 | . . . . . 6 β’ (Β¬ π β V β (mRExβπ) = β ) | |
18 | 6, 17 | eqtrid 2785 | . . . . 5 β’ (Β¬ π β V β π = β ) |
19 | 18 | xpeq2d 5667 | . . . 4 β’ (Β¬ π β V β (πΎ Γ π ) = (πΎ Γ β )) |
20 | 15, 16, 19 | 3eqtr4a 2799 | . . 3 β’ (Β¬ π β V β (mExβπ) = (πΎ Γ π )) |
21 | 13, 20 | pm2.61i 182 | . 2 β’ (mExβπ) = (πΎ Γ π ) |
22 | 1, 21 | eqtri 2761 | 1 β’ πΈ = (πΎ Γ π ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1542 β wcel 2107 Vcvv 3447 β c0 4286 Γ cxp 5635 βcfv 6500 mTCcmtc 34122 mRExcmrex 34124 mExcmex 34125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-iota 6452 df-fun 6502 df-fv 6508 df-mex 34145 |
This theorem is referenced by: mexval2 34161 msubff 34188 msubco 34189 msubff1 34214 mvhf 34216 msubvrs 34218 |
Copyright terms: Public domain | W3C validator |