Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mexval Structured version   Visualization version   GIF version

Theorem mexval 35470
Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mexval.k 𝐾 = (mTC‘𝑇)
mexval.e 𝐸 = (mEx‘𝑇)
mexval.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mexval 𝐸 = (𝐾 × 𝑅)

Proof of Theorem mexval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mexval.e . 2 𝐸 = (mEx‘𝑇)
2 fveq2 6920 . . . . . 6 (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇))
3 mexval.k . . . . . 6 𝐾 = (mTC‘𝑇)
42, 3eqtr4di 2798 . . . . 5 (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾)
5 fveq2 6920 . . . . . 6 (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇))
6 mexval.r . . . . . 6 𝑅 = (mREx‘𝑇)
75, 6eqtr4di 2798 . . . . 5 (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅)
84, 7xpeq12d 5731 . . . 4 (𝑡 = 𝑇 → ((mTC‘𝑡) × (mREx‘𝑡)) = (𝐾 × 𝑅))
9 df-mex 35455 . . . 4 mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡)))
10 fvex 6933 . . . . 5 (mTC‘𝑡) ∈ V
11 fvex 6933 . . . . 5 (mREx‘𝑡) ∈ V
1210, 11xpex 7788 . . . 4 ((mTC‘𝑡) × (mREx‘𝑡)) ∈ V
138, 9, 12fvmpt3i 7034 . . 3 (𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅))
14 xp0 6189 . . . . 5 (𝐾 × ∅) = ∅
1514eqcomi 2749 . . . 4 ∅ = (𝐾 × ∅)
16 fvprc 6912 . . . 4 𝑇 ∈ V → (mEx‘𝑇) = ∅)
17 fvprc 6912 . . . . . 6 𝑇 ∈ V → (mREx‘𝑇) = ∅)
186, 17eqtrid 2792 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
1918xpeq2d 5730 . . . 4 𝑇 ∈ V → (𝐾 × 𝑅) = (𝐾 × ∅))
2015, 16, 193eqtr4a 2806 . . 3 𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅))
2113, 20pm2.61i 182 . 2 (mEx‘𝑇) = (𝐾 × 𝑅)
221, 21eqtri 2768 1 𝐸 = (𝐾 × 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352   × cxp 5698  cfv 6573  mTCcmtc 35432  mRExcmrex 35434  mExcmex 35435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-mex 35455
This theorem is referenced by:  mexval2  35471  msubff  35498  msubco  35499  msubff1  35524  mvhf  35526  msubvrs  35528
  Copyright terms: Public domain W3C validator