![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mexval | Structured version Visualization version GIF version |
Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mexval.k | ⊢ 𝐾 = (mTC‘𝑇) |
mexval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mexval.r | ⊢ 𝑅 = (mREx‘𝑇) |
Ref | Expression |
---|---|
mexval | ⊢ 𝐸 = (𝐾 × 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mexval.e | . 2 ⊢ 𝐸 = (mEx‘𝑇) | |
2 | fveq2 6920 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇)) | |
3 | mexval.k | . . . . . 6 ⊢ 𝐾 = (mTC‘𝑇) | |
4 | 2, 3 | eqtr4di 2798 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾) |
5 | fveq2 6920 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇)) | |
6 | mexval.r | . . . . . 6 ⊢ 𝑅 = (mREx‘𝑇) | |
7 | 5, 6 | eqtr4di 2798 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅) |
8 | 4, 7 | xpeq12d 5731 | . . . 4 ⊢ (𝑡 = 𝑇 → ((mTC‘𝑡) × (mREx‘𝑡)) = (𝐾 × 𝑅)) |
9 | df-mex 35455 | . . . 4 ⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | |
10 | fvex 6933 | . . . . 5 ⊢ (mTC‘𝑡) ∈ V | |
11 | fvex 6933 | . . . . 5 ⊢ (mREx‘𝑡) ∈ V | |
12 | 10, 11 | xpex 7788 | . . . 4 ⊢ ((mTC‘𝑡) × (mREx‘𝑡)) ∈ V |
13 | 8, 9, 12 | fvmpt3i 7034 | . . 3 ⊢ (𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅)) |
14 | xp0 6189 | . . . . 5 ⊢ (𝐾 × ∅) = ∅ | |
15 | 14 | eqcomi 2749 | . . . 4 ⊢ ∅ = (𝐾 × ∅) |
16 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mEx‘𝑇) = ∅) | |
17 | fvprc 6912 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mREx‘𝑇) = ∅) | |
18 | 6, 17 | eqtrid 2792 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
19 | 18 | xpeq2d 5730 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (𝐾 × 𝑅) = (𝐾 × ∅)) |
20 | 15, 16, 19 | 3eqtr4a 2806 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅)) |
21 | 13, 20 | pm2.61i 182 | . 2 ⊢ (mEx‘𝑇) = (𝐾 × 𝑅) |
22 | 1, 21 | eqtri 2768 | 1 ⊢ 𝐸 = (𝐾 × 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 × cxp 5698 ‘cfv 6573 mTCcmtc 35432 mRExcmrex 35434 mExcmex 35435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-mex 35455 |
This theorem is referenced by: mexval2 35471 msubff 35498 msubco 35499 msubff1 35524 mvhf 35526 msubvrs 35528 |
Copyright terms: Public domain | W3C validator |