| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mexval | Structured version Visualization version GIF version | ||
| Description: The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mexval.k | ⊢ 𝐾 = (mTC‘𝑇) |
| mexval.e | ⊢ 𝐸 = (mEx‘𝑇) |
| mexval.r | ⊢ 𝑅 = (mREx‘𝑇) |
| Ref | Expression |
|---|---|
| mexval | ⊢ 𝐸 = (𝐾 × 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mexval.e | . 2 ⊢ 𝐸 = (mEx‘𝑇) | |
| 2 | fveq2 6876 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = (mTC‘𝑇)) | |
| 3 | mexval.k | . . . . . 6 ⊢ 𝐾 = (mTC‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2788 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mTC‘𝑡) = 𝐾) |
| 5 | fveq2 6876 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = (mREx‘𝑇)) | |
| 6 | mexval.r | . . . . . 6 ⊢ 𝑅 = (mREx‘𝑇) | |
| 7 | 5, 6 | eqtr4di 2788 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mREx‘𝑡) = 𝑅) |
| 8 | 4, 7 | xpeq12d 5685 | . . . 4 ⊢ (𝑡 = 𝑇 → ((mTC‘𝑡) × (mREx‘𝑡)) = (𝐾 × 𝑅)) |
| 9 | df-mex 35509 | . . . 4 ⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | |
| 10 | fvex 6889 | . . . . 5 ⊢ (mTC‘𝑡) ∈ V | |
| 11 | fvex 6889 | . . . . 5 ⊢ (mREx‘𝑡) ∈ V | |
| 12 | 10, 11 | xpex 7747 | . . . 4 ⊢ ((mTC‘𝑡) × (mREx‘𝑡)) ∈ V |
| 13 | 8, 9, 12 | fvmpt3i 6991 | . . 3 ⊢ (𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅)) |
| 14 | xp0 6147 | . . . . 5 ⊢ (𝐾 × ∅) = ∅ | |
| 15 | 14 | eqcomi 2744 | . . . 4 ⊢ ∅ = (𝐾 × ∅) |
| 16 | fvprc 6868 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mEx‘𝑇) = ∅) | |
| 17 | fvprc 6868 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mREx‘𝑇) = ∅) | |
| 18 | 6, 17 | eqtrid 2782 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
| 19 | 18 | xpeq2d 5684 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (𝐾 × 𝑅) = (𝐾 × ∅)) |
| 20 | 15, 16, 19 | 3eqtr4a 2796 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mEx‘𝑇) = (𝐾 × 𝑅)) |
| 21 | 13, 20 | pm2.61i 182 | . 2 ⊢ (mEx‘𝑇) = (𝐾 × 𝑅) |
| 22 | 1, 21 | eqtri 2758 | 1 ⊢ 𝐸 = (𝐾 × 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 × cxp 5652 ‘cfv 6531 mTCcmtc 35486 mRExcmrex 35488 mExcmex 35489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-mex 35509 |
| This theorem is referenced by: mexval2 35525 msubff 35552 msubco 35553 msubff1 35578 mvhf 35580 msubvrs 35582 |
| Copyright terms: Public domain | W3C validator |