| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isprimroot2 | Structured version Visualization version GIF version | ||
| Description: Alternative way of creating primitive roots. (Contributed by metakunt, 14-Jul-2025.) |
| Ref | Expression |
|---|---|
| isprimroot2.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| isprimroot2.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| isprimroot2.3 | ⊢ (𝜑 → 𝑀 ∈ (Base‘𝑅)) |
| isprimroot2.4 | ⊢ (𝜑 → ((od‘𝑅)‘𝑀) = 𝐾) |
| Ref | Expression |
|---|---|
| isprimroot2 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprimroot2.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (Base‘𝑅)) | |
| 2 | isprimroot2.4 | . . . . . 6 ⊢ (𝜑 → ((od‘𝑅)‘𝑀) = 𝐾) | |
| 3 | 2 | eqcomd 2737 | . . . . 5 ⊢ (𝜑 → 𝐾 = ((od‘𝑅)‘𝑀)) |
| 4 | 3 | oveq1d 7361 | . . . 4 ⊢ (𝜑 → (𝐾(.g‘𝑅)𝑀) = (((od‘𝑅)‘𝑀)(.g‘𝑅)𝑀)) |
| 5 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | eqid 2731 | . . . . . 6 ⊢ (od‘𝑅) = (od‘𝑅) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 9 | 5, 6, 7, 8 | odid 19448 | . . . . 5 ⊢ (𝑀 ∈ (Base‘𝑅) → (((od‘𝑅)‘𝑀)(.g‘𝑅)𝑀) = (0g‘𝑅)) |
| 10 | 1, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (((od‘𝑅)‘𝑀)(.g‘𝑅)𝑀) = (0g‘𝑅)) |
| 11 | 4, 10 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅)) |
| 12 | 2 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → ((od‘𝑅)‘𝑀) = 𝐾) |
| 13 | 12 | eqcomd 2737 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝐾 = ((od‘𝑅)‘𝑀)) |
| 14 | isprimroot2.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 15 | 14 | cmnmndd 19714 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 16 | 15 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝑅 ∈ Mnd) |
| 17 | 1 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝑀 ∈ (Base‘𝑅)) |
| 18 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝑙 ∈ ℕ0) | |
| 19 | 5, 6, 7, 8 | oddvdsnn0 19454 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Mnd ∧ 𝑀 ∈ (Base‘𝑅) ∧ 𝑙 ∈ ℕ0) → (((od‘𝑅)‘𝑀) ∥ 𝑙 ↔ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅))) |
| 20 | 16, 17, 18, 19 | syl3anc 1373 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → (((od‘𝑅)‘𝑀) ∥ 𝑙 ↔ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅))) |
| 21 | 20 | bicomd 223 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) ↔ ((od‘𝑅)‘𝑀) ∥ 𝑙)) |
| 22 | 21 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → ((od‘𝑅)‘𝑀) ∥ 𝑙)) |
| 23 | 22 | imp 406 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → ((od‘𝑅)‘𝑀) ∥ 𝑙) |
| 24 | 13, 23 | eqbrtrd 5113 | . . . . 5 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝐾 ∥ 𝑙) |
| 25 | 24 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
| 26 | 25 | ralrimiva 3124 | . . 3 ⊢ (𝜑 → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
| 27 | 1, 11, 26 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
| 28 | isprimroot2.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 29 | 28 | nnnn0d 12439 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| 30 | 14, 29, 7 | isprimroot 42125 | . 2 ⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
| 31 | 27, 30 | mpbird 257 | 1 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℕcn 12122 ℕ0cn0 12378 ∥ cdvds 16160 Basecbs 17117 0gc0g 17340 Mndcmnd 18639 .gcmg 18977 odcod 19434 CMndccmn 19690 PrimRoots cprimroots 42123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-fl 13693 df-mod 13771 df-seq 13906 df-dvds 16161 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mulg 18978 df-od 19438 df-cmn 19692 df-primroots 42124 |
| This theorem is referenced by: unitscyglem5 42231 |
| Copyright terms: Public domain | W3C validator |