| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isprimroot2 | Structured version Visualization version GIF version | ||
| Description: Alternative way of creating primitive roots. (Contributed by metakunt, 14-Jul-2025.) |
| Ref | Expression |
|---|---|
| isprimroot2.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| isprimroot2.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| isprimroot2.3 | ⊢ (𝜑 → 𝑀 ∈ (Base‘𝑅)) |
| isprimroot2.4 | ⊢ (𝜑 → ((od‘𝑅)‘𝑀) = 𝐾) |
| Ref | Expression |
|---|---|
| isprimroot2 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprimroot2.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (Base‘𝑅)) | |
| 2 | isprimroot2.4 | . . . . . 6 ⊢ (𝜑 → ((od‘𝑅)‘𝑀) = 𝐾) | |
| 3 | 2 | eqcomd 2736 | . . . . 5 ⊢ (𝜑 → 𝐾 = ((od‘𝑅)‘𝑀)) |
| 4 | 3 | oveq1d 7405 | . . . 4 ⊢ (𝜑 → (𝐾(.g‘𝑅)𝑀) = (((od‘𝑅)‘𝑀)(.g‘𝑅)𝑀)) |
| 5 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | eqid 2730 | . . . . . 6 ⊢ (od‘𝑅) = (od‘𝑅) | |
| 7 | eqid 2730 | . . . . . 6 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 8 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 9 | 5, 6, 7, 8 | odid 19475 | . . . . 5 ⊢ (𝑀 ∈ (Base‘𝑅) → (((od‘𝑅)‘𝑀)(.g‘𝑅)𝑀) = (0g‘𝑅)) |
| 10 | 1, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (((od‘𝑅)‘𝑀)(.g‘𝑅)𝑀) = (0g‘𝑅)) |
| 11 | 4, 10 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅)) |
| 12 | 2 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → ((od‘𝑅)‘𝑀) = 𝐾) |
| 13 | 12 | eqcomd 2736 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝐾 = ((od‘𝑅)‘𝑀)) |
| 14 | isprimroot2.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 15 | 14 | cmnmndd 19741 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 16 | 15 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝑅 ∈ Mnd) |
| 17 | 1 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝑀 ∈ (Base‘𝑅)) |
| 18 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝑙 ∈ ℕ0) | |
| 19 | 5, 6, 7, 8 | oddvdsnn0 19481 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Mnd ∧ 𝑀 ∈ (Base‘𝑅) ∧ 𝑙 ∈ ℕ0) → (((od‘𝑅)‘𝑀) ∥ 𝑙 ↔ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅))) |
| 20 | 16, 17, 18, 19 | syl3anc 1373 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → (((od‘𝑅)‘𝑀) ∥ 𝑙 ↔ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅))) |
| 21 | 20 | bicomd 223 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) ↔ ((od‘𝑅)‘𝑀) ∥ 𝑙)) |
| 22 | 21 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → ((od‘𝑅)‘𝑀) ∥ 𝑙)) |
| 23 | 22 | imp 406 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → ((od‘𝑅)‘𝑀) ∥ 𝑙) |
| 24 | 13, 23 | eqbrtrd 5132 | . . . . 5 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝐾 ∥ 𝑙) |
| 25 | 24 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
| 26 | 25 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
| 27 | 1, 11, 26 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
| 28 | isprimroot2.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 29 | 28 | nnnn0d 12510 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| 30 | 14, 29, 7 | isprimroot 42088 | . 2 ⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
| 31 | 27, 30 | mpbird 257 | 1 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℕcn 12193 ℕ0cn0 12449 ∥ cdvds 16229 Basecbs 17186 0gc0g 17409 Mndcmnd 18668 .gcmg 19006 odcod 19461 CMndccmn 19717 PrimRoots cprimroots 42086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fl 13761 df-mod 13839 df-seq 13974 df-dvds 16230 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mulg 19007 df-od 19465 df-cmn 19719 df-primroots 42087 |
| This theorem is referenced by: unitscyglem5 42194 |
| Copyright terms: Public domain | W3C validator |