![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isprimroot2 | Structured version Visualization version GIF version |
Description: Alternative way of creating primitive roots. (Contributed by metakunt, 14-Jul-2025.) |
Ref | Expression |
---|---|
isprimroot2.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
isprimroot2.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
isprimroot2.3 | ⊢ (𝜑 → 𝑀 ∈ (Base‘𝑅)) |
isprimroot2.4 | ⊢ (𝜑 → ((od‘𝑅)‘𝑀) = 𝐾) |
Ref | Expression |
---|---|
isprimroot2 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprimroot2.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (Base‘𝑅)) | |
2 | isprimroot2.4 | . . . . . 6 ⊢ (𝜑 → ((od‘𝑅)‘𝑀) = 𝐾) | |
3 | 2 | eqcomd 2746 | . . . . 5 ⊢ (𝜑 → 𝐾 = ((od‘𝑅)‘𝑀)) |
4 | 3 | oveq1d 7463 | . . . 4 ⊢ (𝜑 → (𝐾(.g‘𝑅)𝑀) = (((od‘𝑅)‘𝑀)(.g‘𝑅)𝑀)) |
5 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | eqid 2740 | . . . . . 6 ⊢ (od‘𝑅) = (od‘𝑅) | |
7 | eqid 2740 | . . . . . 6 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
8 | eqid 2740 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | 5, 6, 7, 8 | odid 19580 | . . . . 5 ⊢ (𝑀 ∈ (Base‘𝑅) → (((od‘𝑅)‘𝑀)(.g‘𝑅)𝑀) = (0g‘𝑅)) |
10 | 1, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (((od‘𝑅)‘𝑀)(.g‘𝑅)𝑀) = (0g‘𝑅)) |
11 | 4, 10 | eqtrd 2780 | . . 3 ⊢ (𝜑 → (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅)) |
12 | 2 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → ((od‘𝑅)‘𝑀) = 𝐾) |
13 | 12 | eqcomd 2746 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝐾 = ((od‘𝑅)‘𝑀)) |
14 | isprimroot2.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
15 | 14 | cmnmndd 19846 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
16 | 15 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝑅 ∈ Mnd) |
17 | 1 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝑀 ∈ (Base‘𝑅)) |
18 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → 𝑙 ∈ ℕ0) | |
19 | 5, 6, 7, 8 | oddvdsnn0 19586 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Mnd ∧ 𝑀 ∈ (Base‘𝑅) ∧ 𝑙 ∈ ℕ0) → (((od‘𝑅)‘𝑀) ∥ 𝑙 ↔ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅))) |
20 | 16, 17, 18, 19 | syl3anc 1371 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → (((od‘𝑅)‘𝑀) ∥ 𝑙 ↔ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅))) |
21 | 20 | bicomd 223 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) ↔ ((od‘𝑅)‘𝑀) ∥ 𝑙)) |
22 | 21 | biimpd 229 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → ((od‘𝑅)‘𝑀) ∥ 𝑙)) |
23 | 22 | imp 406 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → ((od‘𝑅)‘𝑀) ∥ 𝑙) |
24 | 13, 23 | eqbrtrd 5188 | . . . . 5 ⊢ (((𝜑 ∧ 𝑙 ∈ ℕ0) ∧ (𝑙(.g‘𝑅)𝑀) = (0g‘𝑅)) → 𝐾 ∥ 𝑙) |
25 | 24 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑙 ∈ ℕ0) → ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
26 | 25 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)) |
27 | 1, 11, 26 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙))) |
28 | isprimroot2.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
29 | 28 | nnnn0d 12613 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
30 | 14, 29, 7 | isprimroot 42050 | . 2 ⊢ (𝜑 → (𝑀 ∈ (𝑅 PrimRoots 𝐾) ↔ (𝑀 ∈ (Base‘𝑅) ∧ (𝐾(.g‘𝑅)𝑀) = (0g‘𝑅) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑅)𝑀) = (0g‘𝑅) → 𝐾 ∥ 𝑙)))) |
31 | 27, 30 | mpbird 257 | 1 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℕcn 12293 ℕ0cn0 12553 ∥ cdvds 16302 Basecbs 17258 0gc0g 17499 Mndcmnd 18772 .gcmg 19107 odcod 19566 CMndccmn 19822 PrimRoots cprimroots 42048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fl 13843 df-mod 13921 df-seq 14053 df-dvds 16303 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mulg 19108 df-od 19570 df-cmn 19824 df-primroots 42049 |
This theorem is referenced by: unitscyglem5 42156 |
Copyright terms: Public domain | W3C validator |