| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > motcl | Structured version Visualization version GIF version | ||
| Description: Closure of motions. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismot.m | ⊢ − = (dist‘𝐺) |
| motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| motco.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
| motcl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| motcl | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismot.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | ismot.m | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | motgrp.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 4 | motco.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
| 5 | 1, 2, 3, 4 | motf1o 28516 | . . 3 ⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) |
| 6 | f1of 6763 | . . 3 ⊢ (𝐹:𝑃–1-1-onto→𝑃 → 𝐹:𝑃⟶𝑃) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝐹:𝑃⟶𝑃) |
| 8 | motcl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | 7, 8 | ffvelcdmd 7018 | 1 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 distcds 17170 Ismtcismt 28510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-ismt 28511 |
| This theorem is referenced by: motcgr3 28523 motrag 28686 |
| Copyright terms: Public domain | W3C validator |