![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > motcl | Structured version Visualization version GIF version |
Description: Closure of motions. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
ismot.p | β’ π = (BaseβπΊ) |
ismot.m | β’ β = (distβπΊ) |
motgrp.1 | β’ (π β πΊ β π) |
motco.2 | β’ (π β πΉ β (πΊIsmtπΊ)) |
motcl.a | β’ (π β π΄ β π) |
Ref | Expression |
---|---|
motcl | β’ (π β (πΉβπ΄) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismot.p | . . . 4 β’ π = (BaseβπΊ) | |
2 | ismot.m | . . . 4 β’ β = (distβπΊ) | |
3 | motgrp.1 | . . . 4 β’ (π β πΊ β π) | |
4 | motco.2 | . . . 4 β’ (π β πΉ β (πΊIsmtπΊ)) | |
5 | 1, 2, 3, 4 | motf1o 28056 | . . 3 β’ (π β πΉ:πβ1-1-ontoβπ) |
6 | f1of 6832 | . . 3 β’ (πΉ:πβ1-1-ontoβπ β πΉ:πβΆπ) | |
7 | 5, 6 | syl 17 | . 2 β’ (π β πΉ:πβΆπ) |
8 | motcl.a | . 2 β’ (π β π΄ β π) | |
9 | 7, 8 | ffvelcdmd 7086 | 1 β’ (π β (πΉβπ΄) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 βΆwf 6538 β1-1-ontoβwf1o 6541 βcfv 6542 (class class class)co 7411 Basecbs 17148 distcds 17210 Ismtcismt 28050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-ismt 28051 |
This theorem is referenced by: motcgr3 28063 motrag 28226 |
Copyright terms: Public domain | W3C validator |