![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > motcgr3 | Structured version Visualization version GIF version |
Description: Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
motcgr3.p | ⊢ 𝑃 = (Base‘𝐺) |
motcgr3.m | ⊢ − = (dist‘𝐺) |
motcgr3.r | ⊢ ∼ = (cgrG‘𝐺) |
motcgr3.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
motcgr3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
motcgr3.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
motcgr3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
motcgr3.d | ⊢ (𝜑 → 𝐷 = (𝐻‘𝐴)) |
motcgr3.e | ⊢ (𝜑 → 𝐸 = (𝐻‘𝐵)) |
motcgr3.f | ⊢ (𝜑 → 𝐹 = (𝐻‘𝐶)) |
motcgr3.h | ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) |
Ref | Expression |
---|---|
motcgr3 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | motcgr3.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | motcgr3.m | . 2 ⊢ − = (dist‘𝐺) | |
3 | motcgr3.r | . 2 ⊢ ∼ = (cgrG‘𝐺) | |
4 | motcgr3.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | motcgr3.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | motcgr3.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | motcgr3.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | motcgr3.d | . . 3 ⊢ (𝜑 → 𝐷 = (𝐻‘𝐴)) | |
9 | motcgr3.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) | |
10 | 1, 2, 4, 9, 5 | motcl 27036 | . . 3 ⊢ (𝜑 → (𝐻‘𝐴) ∈ 𝑃) |
11 | 8, 10 | eqeltrd 2838 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
12 | motcgr3.e | . . 3 ⊢ (𝜑 → 𝐸 = (𝐻‘𝐵)) | |
13 | 1, 2, 4, 9, 6 | motcl 27036 | . . 3 ⊢ (𝜑 → (𝐻‘𝐵) ∈ 𝑃) |
14 | 12, 13 | eqeltrd 2838 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
15 | motcgr3.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝐻‘𝐶)) | |
16 | 1, 2, 4, 9, 7 | motcl 27036 | . . 3 ⊢ (𝜑 → (𝐻‘𝐶) ∈ 𝑃) |
17 | 15, 16 | eqeltrd 2838 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
18 | 8, 12 | oveq12d 7335 | . . 3 ⊢ (𝜑 → (𝐷 − 𝐸) = ((𝐻‘𝐴) − (𝐻‘𝐵))) |
19 | 1, 2, 4, 5, 6, 9 | motcgr 27033 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐴) − (𝐻‘𝐵)) = (𝐴 − 𝐵)) |
20 | 18, 19 | eqtr2d 2778 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
21 | 12, 15 | oveq12d 7335 | . . 3 ⊢ (𝜑 → (𝐸 − 𝐹) = ((𝐻‘𝐵) − (𝐻‘𝐶))) |
22 | 1, 2, 4, 6, 7, 9 | motcgr 27033 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐵) − (𝐻‘𝐶)) = (𝐵 − 𝐶)) |
23 | 21, 22 | eqtr2d 2778 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
24 | 15, 8 | oveq12d 7335 | . . 3 ⊢ (𝜑 → (𝐹 − 𝐷) = ((𝐻‘𝐶) − (𝐻‘𝐴))) |
25 | 1, 2, 4, 7, 5, 9 | motcgr 27033 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐶) − (𝐻‘𝐴)) = (𝐶 − 𝐴)) |
26 | 24, 25 | eqtr2d 2778 | . 2 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
27 | 1, 2, 3, 4, 5, 6, 7, 11, 14, 17, 20, 23, 26 | trgcgr 27013 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 class class class wbr 5087 ‘cfv 6466 (class class class)co 7317 〈“cs3 14634 Basecbs 16989 distcds 17048 TarskiGcstrkg 26924 cgrGccgrg 27007 Ismtcismt 27029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-map 8667 df-pm 8668 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-n0 12314 df-z 12400 df-uz 12663 df-fz 13320 df-fzo 13463 df-hash 14125 df-word 14297 df-concat 14353 df-s1 14380 df-s2 14640 df-s3 14641 df-trkgc 26945 df-trkgcb 26947 df-trkg 26950 df-cgrg 27008 df-ismt 27030 |
This theorem is referenced by: motrag 27205 |
Copyright terms: Public domain | W3C validator |