|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > motcgr3 | Structured version Visualization version GIF version | ||
| Description: Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| motcgr3.p | ⊢ 𝑃 = (Base‘𝐺) | 
| motcgr3.m | ⊢ − = (dist‘𝐺) | 
| motcgr3.r | ⊢ ∼ = (cgrG‘𝐺) | 
| motcgr3.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| motcgr3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| motcgr3.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| motcgr3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) | 
| motcgr3.d | ⊢ (𝜑 → 𝐷 = (𝐻‘𝐴)) | 
| motcgr3.e | ⊢ (𝜑 → 𝐸 = (𝐻‘𝐵)) | 
| motcgr3.f | ⊢ (𝜑 → 𝐹 = (𝐻‘𝐶)) | 
| motcgr3.h | ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) | 
| Ref | Expression | 
|---|---|
| motcgr3 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | motcgr3.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | motcgr3.m | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | motcgr3.r | . 2 ⊢ ∼ = (cgrG‘𝐺) | |
| 4 | motcgr3.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | motcgr3.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | motcgr3.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | motcgr3.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 8 | motcgr3.d | . . 3 ⊢ (𝜑 → 𝐷 = (𝐻‘𝐴)) | |
| 9 | motcgr3.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) | |
| 10 | 1, 2, 4, 9, 5 | motcl 28547 | . . 3 ⊢ (𝜑 → (𝐻‘𝐴) ∈ 𝑃) | 
| 11 | 8, 10 | eqeltrd 2841 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | 
| 12 | motcgr3.e | . . 3 ⊢ (𝜑 → 𝐸 = (𝐻‘𝐵)) | |
| 13 | 1, 2, 4, 9, 6 | motcl 28547 | . . 3 ⊢ (𝜑 → (𝐻‘𝐵) ∈ 𝑃) | 
| 14 | 12, 13 | eqeltrd 2841 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | 
| 15 | motcgr3.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝐻‘𝐶)) | |
| 16 | 1, 2, 4, 9, 7 | motcl 28547 | . . 3 ⊢ (𝜑 → (𝐻‘𝐶) ∈ 𝑃) | 
| 17 | 15, 16 | eqeltrd 2841 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | 
| 18 | 8, 12 | oveq12d 7449 | . . 3 ⊢ (𝜑 → (𝐷 − 𝐸) = ((𝐻‘𝐴) − (𝐻‘𝐵))) | 
| 19 | 1, 2, 4, 5, 6, 9 | motcgr 28544 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐴) − (𝐻‘𝐵)) = (𝐴 − 𝐵)) | 
| 20 | 18, 19 | eqtr2d 2778 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) | 
| 21 | 12, 15 | oveq12d 7449 | . . 3 ⊢ (𝜑 → (𝐸 − 𝐹) = ((𝐻‘𝐵) − (𝐻‘𝐶))) | 
| 22 | 1, 2, 4, 6, 7, 9 | motcgr 28544 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐵) − (𝐻‘𝐶)) = (𝐵 − 𝐶)) | 
| 23 | 21, 22 | eqtr2d 2778 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) | 
| 24 | 15, 8 | oveq12d 7449 | . . 3 ⊢ (𝜑 → (𝐹 − 𝐷) = ((𝐻‘𝐶) − (𝐻‘𝐴))) | 
| 25 | 1, 2, 4, 7, 5, 9 | motcgr 28544 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐶) − (𝐻‘𝐴)) = (𝐶 − 𝐴)) | 
| 26 | 24, 25 | eqtr2d 2778 | . 2 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) | 
| 27 | 1, 2, 3, 4, 5, 6, 7, 11, 14, 17, 20, 23, 26 | trgcgr 28524 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 〈“cs3 14881 Basecbs 17247 distcds 17306 TarskiGcstrkg 28435 cgrGccgrg 28518 Ismtcismt 28540 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-s2 14887 df-s3 14888 df-trkgc 28456 df-trkgcb 28458 df-trkg 28461 df-cgrg 28519 df-ismt 28541 | 
| This theorem is referenced by: motrag 28716 | 
| Copyright terms: Public domain | W3C validator |