| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > motcgr3 | Structured version Visualization version GIF version | ||
| Description: Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| motcgr3.p | ⊢ 𝑃 = (Base‘𝐺) |
| motcgr3.m | ⊢ − = (dist‘𝐺) |
| motcgr3.r | ⊢ ∼ = (cgrG‘𝐺) |
| motcgr3.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| motcgr3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| motcgr3.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| motcgr3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| motcgr3.d | ⊢ (𝜑 → 𝐷 = (𝐻‘𝐴)) |
| motcgr3.e | ⊢ (𝜑 → 𝐸 = (𝐻‘𝐵)) |
| motcgr3.f | ⊢ (𝜑 → 𝐹 = (𝐻‘𝐶)) |
| motcgr3.h | ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) |
| Ref | Expression |
|---|---|
| motcgr3 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | motcgr3.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | motcgr3.m | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | motcgr3.r | . 2 ⊢ ∼ = (cgrG‘𝐺) | |
| 4 | motcgr3.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | motcgr3.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | motcgr3.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | motcgr3.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 8 | motcgr3.d | . . 3 ⊢ (𝜑 → 𝐷 = (𝐻‘𝐴)) | |
| 9 | motcgr3.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) | |
| 10 | 1, 2, 4, 9, 5 | motcl 28517 | . . 3 ⊢ (𝜑 → (𝐻‘𝐴) ∈ 𝑃) |
| 11 | 8, 10 | eqeltrd 2831 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 12 | motcgr3.e | . . 3 ⊢ (𝜑 → 𝐸 = (𝐻‘𝐵)) | |
| 13 | 1, 2, 4, 9, 6 | motcl 28517 | . . 3 ⊢ (𝜑 → (𝐻‘𝐵) ∈ 𝑃) |
| 14 | 12, 13 | eqeltrd 2831 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| 15 | motcgr3.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝐻‘𝐶)) | |
| 16 | 1, 2, 4, 9, 7 | motcl 28517 | . . 3 ⊢ (𝜑 → (𝐻‘𝐶) ∈ 𝑃) |
| 17 | 15, 16 | eqeltrd 2831 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| 18 | 8, 12 | oveq12d 7364 | . . 3 ⊢ (𝜑 → (𝐷 − 𝐸) = ((𝐻‘𝐴) − (𝐻‘𝐵))) |
| 19 | 1, 2, 4, 5, 6, 9 | motcgr 28514 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐴) − (𝐻‘𝐵)) = (𝐴 − 𝐵)) |
| 20 | 18, 19 | eqtr2d 2767 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
| 21 | 12, 15 | oveq12d 7364 | . . 3 ⊢ (𝜑 → (𝐸 − 𝐹) = ((𝐻‘𝐵) − (𝐻‘𝐶))) |
| 22 | 1, 2, 4, 6, 7, 9 | motcgr 28514 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐵) − (𝐻‘𝐶)) = (𝐵 − 𝐶)) |
| 23 | 21, 22 | eqtr2d 2767 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
| 24 | 15, 8 | oveq12d 7364 | . . 3 ⊢ (𝜑 → (𝐹 − 𝐷) = ((𝐻‘𝐶) − (𝐻‘𝐴))) |
| 25 | 1, 2, 4, 7, 5, 9 | motcgr 28514 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐶) − (𝐻‘𝐴)) = (𝐶 − 𝐴)) |
| 26 | 24, 25 | eqtr2d 2767 | . 2 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
| 27 | 1, 2, 3, 4, 5, 6, 7, 11, 14, 17, 20, 23, 26 | trgcgr 28494 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 〈“cs3 14749 Basecbs 17120 distcds 17170 TarskiGcstrkg 28405 cgrGccgrg 28488 Ismtcismt 28510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-trkgc 28426 df-trkgcb 28428 df-trkg 28431 df-cgrg 28489 df-ismt 28511 |
| This theorem is referenced by: motrag 28686 |
| Copyright terms: Public domain | W3C validator |