| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > motcgr3 | Structured version Visualization version GIF version | ||
| Description: Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| motcgr3.p | ⊢ 𝑃 = (Base‘𝐺) |
| motcgr3.m | ⊢ − = (dist‘𝐺) |
| motcgr3.r | ⊢ ∼ = (cgrG‘𝐺) |
| motcgr3.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| motcgr3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| motcgr3.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| motcgr3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| motcgr3.d | ⊢ (𝜑 → 𝐷 = (𝐻‘𝐴)) |
| motcgr3.e | ⊢ (𝜑 → 𝐸 = (𝐻‘𝐵)) |
| motcgr3.f | ⊢ (𝜑 → 𝐹 = (𝐻‘𝐶)) |
| motcgr3.h | ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) |
| Ref | Expression |
|---|---|
| motcgr3 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | motcgr3.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | motcgr3.m | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | motcgr3.r | . 2 ⊢ ∼ = (cgrG‘𝐺) | |
| 4 | motcgr3.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | motcgr3.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | motcgr3.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | motcgr3.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 8 | motcgr3.d | . . 3 ⊢ (𝜑 → 𝐷 = (𝐻‘𝐴)) | |
| 9 | motcgr3.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) | |
| 10 | 1, 2, 4, 9, 5 | motcl 28473 | . . 3 ⊢ (𝜑 → (𝐻‘𝐴) ∈ 𝑃) |
| 11 | 8, 10 | eqeltrd 2829 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 12 | motcgr3.e | . . 3 ⊢ (𝜑 → 𝐸 = (𝐻‘𝐵)) | |
| 13 | 1, 2, 4, 9, 6 | motcl 28473 | . . 3 ⊢ (𝜑 → (𝐻‘𝐵) ∈ 𝑃) |
| 14 | 12, 13 | eqeltrd 2829 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| 15 | motcgr3.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝐻‘𝐶)) | |
| 16 | 1, 2, 4, 9, 7 | motcl 28473 | . . 3 ⊢ (𝜑 → (𝐻‘𝐶) ∈ 𝑃) |
| 17 | 15, 16 | eqeltrd 2829 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| 18 | 8, 12 | oveq12d 7408 | . . 3 ⊢ (𝜑 → (𝐷 − 𝐸) = ((𝐻‘𝐴) − (𝐻‘𝐵))) |
| 19 | 1, 2, 4, 5, 6, 9 | motcgr 28470 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐴) − (𝐻‘𝐵)) = (𝐴 − 𝐵)) |
| 20 | 18, 19 | eqtr2d 2766 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
| 21 | 12, 15 | oveq12d 7408 | . . 3 ⊢ (𝜑 → (𝐸 − 𝐹) = ((𝐻‘𝐵) − (𝐻‘𝐶))) |
| 22 | 1, 2, 4, 6, 7, 9 | motcgr 28470 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐵) − (𝐻‘𝐶)) = (𝐵 − 𝐶)) |
| 23 | 21, 22 | eqtr2d 2766 | . 2 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
| 24 | 15, 8 | oveq12d 7408 | . . 3 ⊢ (𝜑 → (𝐹 − 𝐷) = ((𝐻‘𝐶) − (𝐻‘𝐴))) |
| 25 | 1, 2, 4, 7, 5, 9 | motcgr 28470 | . . 3 ⊢ (𝜑 → ((𝐻‘𝐶) − (𝐻‘𝐴)) = (𝐶 − 𝐴)) |
| 26 | 24, 25 | eqtr2d 2766 | . 2 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
| 27 | 1, 2, 3, 4, 5, 6, 7, 11, 14, 17, 20, 23, 26 | trgcgr 28450 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 〈“cs3 14815 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 cgrGccgrg 28444 Ismtcismt 28466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-s2 14821 df-s3 14822 df-trkgc 28382 df-trkgcb 28384 df-trkg 28387 df-cgrg 28445 df-ismt 28467 |
| This theorem is referenced by: motrag 28642 |
| Copyright terms: Public domain | W3C validator |