| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ismot.p | . . . 4
⊢ 𝑃 = (Base‘𝐺) | 
| 2 |  | ismot.m | . . . 4
⊢  − =
(dist‘𝐺) | 
| 3 |  | motgrp.1 | . . . 4
⊢ (𝜑 → 𝐺 ∈ 𝑉) | 
| 4 |  | motco.2 | . . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | 
| 5 | 1, 2, 3, 4 | motf1o 28547 | . . 3
⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) | 
| 6 |  | motco.3 | . . . 4
⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) | 
| 7 | 1, 2, 3, 6 | motf1o 28547 | . . 3
⊢ (𝜑 → 𝐻:𝑃–1-1-onto→𝑃) | 
| 8 |  | f1oco 6870 | . . 3
⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝐻:𝑃–1-1-onto→𝑃) → (𝐹 ∘ 𝐻):𝑃–1-1-onto→𝑃) | 
| 9 | 5, 7, 8 | syl2anc 584 | . 2
⊢ (𝜑 → (𝐹 ∘ 𝐻):𝑃–1-1-onto→𝑃) | 
| 10 |  | f1of 6847 | . . . . . . . 8
⊢ (𝐻:𝑃–1-1-onto→𝑃 → 𝐻:𝑃⟶𝑃) | 
| 11 | 7, 10 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝐻:𝑃⟶𝑃) | 
| 12 | 11 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐻:𝑃⟶𝑃) | 
| 13 |  | simprl 770 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑎 ∈ 𝑃) | 
| 14 |  | fvco3 7007 | . . . . . 6
⊢ ((𝐻:𝑃⟶𝑃 ∧ 𝑎 ∈ 𝑃) → ((𝐹 ∘ 𝐻)‘𝑎) = (𝐹‘(𝐻‘𝑎))) | 
| 15 | 12, 13, 14 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹 ∘ 𝐻)‘𝑎) = (𝐹‘(𝐻‘𝑎))) | 
| 16 |  | simprr 772 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑏 ∈ 𝑃) | 
| 17 |  | fvco3 7007 | . . . . . 6
⊢ ((𝐻:𝑃⟶𝑃 ∧ 𝑏 ∈ 𝑃) → ((𝐹 ∘ 𝐻)‘𝑏) = (𝐹‘(𝐻‘𝑏))) | 
| 18 | 12, 16, 17 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹 ∘ 𝐻)‘𝑏) = (𝐹‘(𝐻‘𝑏))) | 
| 19 | 15, 18 | oveq12d 7450 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (((𝐹 ∘ 𝐻)‘𝑎) − ((𝐹 ∘ 𝐻)‘𝑏)) = ((𝐹‘(𝐻‘𝑎)) − (𝐹‘(𝐻‘𝑏)))) | 
| 20 | 3 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺 ∈ 𝑉) | 
| 21 | 12, 13 | ffvelcdmd 7104 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐻‘𝑎) ∈ 𝑃) | 
| 22 | 12, 16 | ffvelcdmd 7104 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐻‘𝑏) ∈ 𝑃) | 
| 23 | 4 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺)) | 
| 24 | 1, 2, 20, 21, 22, 23 | motcgr 28545 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(𝐻‘𝑎)) − (𝐹‘(𝐻‘𝑏))) = ((𝐻‘𝑎) − (𝐻‘𝑏))) | 
| 25 | 6 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐻 ∈ (𝐺Ismt𝐺)) | 
| 26 | 1, 2, 20, 13, 16, 25 | motcgr 28545 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐻‘𝑎) − (𝐻‘𝑏)) = (𝑎 − 𝑏)) | 
| 27 | 19, 24, 26 | 3eqtrd 2780 | . . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (((𝐹 ∘ 𝐻)‘𝑎) − ((𝐹 ∘ 𝐻)‘𝑏)) = (𝑎 − 𝑏)) | 
| 28 | 27 | ralrimivva 3201 | . 2
⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (((𝐹 ∘ 𝐻)‘𝑎) − ((𝐹 ∘ 𝐻)‘𝑏)) = (𝑎 − 𝑏)) | 
| 29 | 1, 2 | ismot 28544 | . . 3
⊢ (𝐺 ∈ 𝑉 → ((𝐹 ∘ 𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹 ∘ 𝐻):𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (((𝐹 ∘ 𝐻)‘𝑎) − ((𝐹 ∘ 𝐻)‘𝑏)) = (𝑎 − 𝑏)))) | 
| 30 | 3, 29 | syl 17 | . 2
⊢ (𝜑 → ((𝐹 ∘ 𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹 ∘ 𝐻):𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (((𝐹 ∘ 𝐻)‘𝑎) − ((𝐹 ∘ 𝐻)‘𝑏)) = (𝑎 − 𝑏)))) | 
| 31 | 9, 28, 30 | mpbir2and 713 | 1
⊢ (𝜑 → (𝐹 ∘ 𝐻) ∈ (𝐺Ismt𝐺)) |