MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motco Structured version   Visualization version   GIF version

Theorem motco 26631
Description: The composition of two motions is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motco.2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
motco.3 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motco (𝜑 → (𝐹𝐻) ∈ (𝐺Ismt𝐺))

Proof of Theorem motco
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismot.p . . . 4 𝑃 = (Base‘𝐺)
2 ismot.m . . . 4 = (dist‘𝐺)
3 motgrp.1 . . . 4 (𝜑𝐺𝑉)
4 motco.2 . . . 4 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
51, 2, 3, 4motf1o 26629 . . 3 (𝜑𝐹:𝑃1-1-onto𝑃)
6 motco.3 . . . 4 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
71, 2, 3, 6motf1o 26629 . . 3 (𝜑𝐻:𝑃1-1-onto𝑃)
8 f1oco 6683 . . 3 ((𝐹:𝑃1-1-onto𝑃𝐻:𝑃1-1-onto𝑃) → (𝐹𝐻):𝑃1-1-onto𝑃)
95, 7, 8syl2anc 587 . 2 (𝜑 → (𝐹𝐻):𝑃1-1-onto𝑃)
10 f1of 6661 . . . . . . . 8 (𝐻:𝑃1-1-onto𝑃𝐻:𝑃𝑃)
117, 10syl 17 . . . . . . 7 (𝜑𝐻:𝑃𝑃)
1211adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐻:𝑃𝑃)
13 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑎𝑃)
14 fvco3 6810 . . . . . 6 ((𝐻:𝑃𝑃𝑎𝑃) → ((𝐹𝐻)‘𝑎) = (𝐹‘(𝐻𝑎)))
1512, 13, 14syl2anc 587 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹𝐻)‘𝑎) = (𝐹‘(𝐻𝑎)))
16 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑏𝑃)
17 fvco3 6810 . . . . . 6 ((𝐻:𝑃𝑃𝑏𝑃) → ((𝐹𝐻)‘𝑏) = (𝐹‘(𝐻𝑏)))
1812, 16, 17syl2anc 587 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹𝐻)‘𝑏) = (𝐹‘(𝐻𝑏)))
1915, 18oveq12d 7231 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = ((𝐹‘(𝐻𝑎)) (𝐹‘(𝐻𝑏))))
203adantr 484 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐺𝑉)
2112, 13ffvelrnd 6905 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐻𝑎) ∈ 𝑃)
2212, 16ffvelrnd 6905 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐻𝑏) ∈ 𝑃)
234adantr 484 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺))
241, 2, 20, 21, 22, 23motcgr 26627 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹‘(𝐻𝑎)) (𝐹‘(𝐻𝑏))) = ((𝐻𝑎) (𝐻𝑏)))
256adantr 484 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐻 ∈ (𝐺Ismt𝐺))
261, 2, 20, 13, 16, 25motcgr 26627 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐻𝑎) (𝐻𝑏)) = (𝑎 𝑏))
2719, 24, 263eqtrd 2781 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))
2827ralrimivva 3112 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))
291, 2ismot 26626 . . 3 (𝐺𝑉 → ((𝐹𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹𝐻):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))))
303, 29syl 17 . 2 (𝜑 → ((𝐹𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹𝐻):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))))
319, 28, 30mpbir2and 713 1 (𝜑 → (𝐹𝐻) ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  ccom 5555  wf 6376  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  Basecbs 16760  distcds 16811  Ismtcismt 26623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-ismt 26624
This theorem is referenced by:  motgrp  26634
  Copyright terms: Public domain W3C validator