MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motco Structured version   Visualization version   GIF version

Theorem motco 28485
Description: The composition of two motions is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motco.2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
motco.3 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motco (𝜑 → (𝐹𝐻) ∈ (𝐺Ismt𝐺))

Proof of Theorem motco
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismot.p . . . 4 𝑃 = (Base‘𝐺)
2 ismot.m . . . 4 = (dist‘𝐺)
3 motgrp.1 . . . 4 (𝜑𝐺𝑉)
4 motco.2 . . . 4 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
51, 2, 3, 4motf1o 28483 . . 3 (𝜑𝐹:𝑃1-1-onto𝑃)
6 motco.3 . . . 4 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
71, 2, 3, 6motf1o 28483 . . 3 (𝜑𝐻:𝑃1-1-onto𝑃)
8 f1oco 6787 . . 3 ((𝐹:𝑃1-1-onto𝑃𝐻:𝑃1-1-onto𝑃) → (𝐹𝐻):𝑃1-1-onto𝑃)
95, 7, 8syl2anc 584 . 2 (𝜑 → (𝐹𝐻):𝑃1-1-onto𝑃)
10 f1of 6764 . . . . . . . 8 (𝐻:𝑃1-1-onto𝑃𝐻:𝑃𝑃)
117, 10syl 17 . . . . . . 7 (𝜑𝐻:𝑃𝑃)
1211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐻:𝑃𝑃)
13 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑎𝑃)
14 fvco3 6922 . . . . . 6 ((𝐻:𝑃𝑃𝑎𝑃) → ((𝐹𝐻)‘𝑎) = (𝐹‘(𝐻𝑎)))
1512, 13, 14syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹𝐻)‘𝑎) = (𝐹‘(𝐻𝑎)))
16 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑏𝑃)
17 fvco3 6922 . . . . . 6 ((𝐻:𝑃𝑃𝑏𝑃) → ((𝐹𝐻)‘𝑏) = (𝐹‘(𝐻𝑏)))
1812, 16, 17syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹𝐻)‘𝑏) = (𝐹‘(𝐻𝑏)))
1915, 18oveq12d 7367 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = ((𝐹‘(𝐻𝑎)) (𝐹‘(𝐻𝑏))))
203adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐺𝑉)
2112, 13ffvelcdmd 7019 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐻𝑎) ∈ 𝑃)
2212, 16ffvelcdmd 7019 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐻𝑏) ∈ 𝑃)
234adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺))
241, 2, 20, 21, 22, 23motcgr 28481 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹‘(𝐻𝑎)) (𝐹‘(𝐻𝑏))) = ((𝐻𝑎) (𝐻𝑏)))
256adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐻 ∈ (𝐺Ismt𝐺))
261, 2, 20, 13, 16, 25motcgr 28481 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐻𝑎) (𝐻𝑏)) = (𝑎 𝑏))
2719, 24, 263eqtrd 2768 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))
2827ralrimivva 3172 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))
291, 2ismot 28480 . . 3 (𝐺𝑉 → ((𝐹𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹𝐻):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))))
303, 29syl 17 . 2 (𝜑 → ((𝐹𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹𝐻):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))))
319, 28, 30mpbir2and 713 1 (𝜑 → (𝐹𝐻) ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ccom 5623  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  Basecbs 17120  distcds 17170  Ismtcismt 28477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-ismt 28478
This theorem is referenced by:  motgrp  28488
  Copyright terms: Public domain W3C validator