MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motco Structured version   Visualization version   GIF version

Theorem motco 28563
Description: The composition of two motions is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motco.2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
motco.3 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motco (𝜑 → (𝐹𝐻) ∈ (𝐺Ismt𝐺))

Proof of Theorem motco
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismot.p . . . 4 𝑃 = (Base‘𝐺)
2 ismot.m . . . 4 = (dist‘𝐺)
3 motgrp.1 . . . 4 (𝜑𝐺𝑉)
4 motco.2 . . . 4 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
51, 2, 3, 4motf1o 28561 . . 3 (𝜑𝐹:𝑃1-1-onto𝑃)
6 motco.3 . . . 4 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
71, 2, 3, 6motf1o 28561 . . 3 (𝜑𝐻:𝑃1-1-onto𝑃)
8 f1oco 6872 . . 3 ((𝐹:𝑃1-1-onto𝑃𝐻:𝑃1-1-onto𝑃) → (𝐹𝐻):𝑃1-1-onto𝑃)
95, 7, 8syl2anc 584 . 2 (𝜑 → (𝐹𝐻):𝑃1-1-onto𝑃)
10 f1of 6849 . . . . . . . 8 (𝐻:𝑃1-1-onto𝑃𝐻:𝑃𝑃)
117, 10syl 17 . . . . . . 7 (𝜑𝐻:𝑃𝑃)
1211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐻:𝑃𝑃)
13 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑎𝑃)
14 fvco3 7008 . . . . . 6 ((𝐻:𝑃𝑃𝑎𝑃) → ((𝐹𝐻)‘𝑎) = (𝐹‘(𝐻𝑎)))
1512, 13, 14syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹𝐻)‘𝑎) = (𝐹‘(𝐻𝑎)))
16 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑏𝑃)
17 fvco3 7008 . . . . . 6 ((𝐻:𝑃𝑃𝑏𝑃) → ((𝐹𝐻)‘𝑏) = (𝐹‘(𝐻𝑏)))
1812, 16, 17syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹𝐻)‘𝑏) = (𝐹‘(𝐻𝑏)))
1915, 18oveq12d 7449 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = ((𝐹‘(𝐻𝑎)) (𝐹‘(𝐻𝑏))))
203adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐺𝑉)
2112, 13ffvelcdmd 7105 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐻𝑎) ∈ 𝑃)
2212, 16ffvelcdmd 7105 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐻𝑏) ∈ 𝑃)
234adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺))
241, 2, 20, 21, 22, 23motcgr 28559 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹‘(𝐻𝑎)) (𝐹‘(𝐻𝑏))) = ((𝐻𝑎) (𝐻𝑏)))
256adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐻 ∈ (𝐺Ismt𝐺))
261, 2, 20, 13, 16, 25motcgr 28559 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐻𝑎) (𝐻𝑏)) = (𝑎 𝑏))
2719, 24, 263eqtrd 2779 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))
2827ralrimivva 3200 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))
291, 2ismot 28558 . . 3 (𝐺𝑉 → ((𝐹𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹𝐻):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))))
303, 29syl 17 . 2 (𝜑 → ((𝐹𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹𝐻):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))))
319, 28, 30mpbir2and 713 1 (𝜑 → (𝐹𝐻) ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  ccom 5693  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Basecbs 17245  distcds 17307  Ismtcismt 28555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-ismt 28556
This theorem is referenced by:  motgrp  28566
  Copyright terms: Public domain W3C validator