| Step | Hyp | Ref
| Expression |
| 1 | | ismot.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | ismot.m |
. . . 4
⊢ − =
(dist‘𝐺) |
| 3 | | motgrp.1 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| 4 | | motco.2 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
| 5 | 1, 2, 3, 4 | motf1o 28522 |
. . 3
⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) |
| 6 | | motco.3 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (𝐺Ismt𝐺)) |
| 7 | 1, 2, 3, 6 | motf1o 28522 |
. . 3
⊢ (𝜑 → 𝐻:𝑃–1-1-onto→𝑃) |
| 8 | | f1oco 6846 |
. . 3
⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝐻:𝑃–1-1-onto→𝑃) → (𝐹 ∘ 𝐻):𝑃–1-1-onto→𝑃) |
| 9 | 5, 7, 8 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝐹 ∘ 𝐻):𝑃–1-1-onto→𝑃) |
| 10 | | f1of 6823 |
. . . . . . . 8
⊢ (𝐻:𝑃–1-1-onto→𝑃 → 𝐻:𝑃⟶𝑃) |
| 11 | 7, 10 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐻:𝑃⟶𝑃) |
| 12 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐻:𝑃⟶𝑃) |
| 13 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑎 ∈ 𝑃) |
| 14 | | fvco3 6983 |
. . . . . 6
⊢ ((𝐻:𝑃⟶𝑃 ∧ 𝑎 ∈ 𝑃) → ((𝐹 ∘ 𝐻)‘𝑎) = (𝐹‘(𝐻‘𝑎))) |
| 15 | 12, 13, 14 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹 ∘ 𝐻)‘𝑎) = (𝐹‘(𝐻‘𝑎))) |
| 16 | | simprr 772 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑏 ∈ 𝑃) |
| 17 | | fvco3 6983 |
. . . . . 6
⊢ ((𝐻:𝑃⟶𝑃 ∧ 𝑏 ∈ 𝑃) → ((𝐹 ∘ 𝐻)‘𝑏) = (𝐹‘(𝐻‘𝑏))) |
| 18 | 12, 16, 17 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹 ∘ 𝐻)‘𝑏) = (𝐹‘(𝐻‘𝑏))) |
| 19 | 15, 18 | oveq12d 7428 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (((𝐹 ∘ 𝐻)‘𝑎) − ((𝐹 ∘ 𝐻)‘𝑏)) = ((𝐹‘(𝐻‘𝑎)) − (𝐹‘(𝐻‘𝑏)))) |
| 20 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺 ∈ 𝑉) |
| 21 | 12, 13 | ffvelcdmd 7080 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐻‘𝑎) ∈ 𝑃) |
| 22 | 12, 16 | ffvelcdmd 7080 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐻‘𝑏) ∈ 𝑃) |
| 23 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺)) |
| 24 | 1, 2, 20, 21, 22, 23 | motcgr 28520 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(𝐻‘𝑎)) − (𝐹‘(𝐻‘𝑏))) = ((𝐻‘𝑎) − (𝐻‘𝑏))) |
| 25 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐻 ∈ (𝐺Ismt𝐺)) |
| 26 | 1, 2, 20, 13, 16, 25 | motcgr 28520 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐻‘𝑎) − (𝐻‘𝑏)) = (𝑎 − 𝑏)) |
| 27 | 19, 24, 26 | 3eqtrd 2775 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (((𝐹 ∘ 𝐻)‘𝑎) − ((𝐹 ∘ 𝐻)‘𝑏)) = (𝑎 − 𝑏)) |
| 28 | 27 | ralrimivva 3188 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (((𝐹 ∘ 𝐻)‘𝑎) − ((𝐹 ∘ 𝐻)‘𝑏)) = (𝑎 − 𝑏)) |
| 29 | 1, 2 | ismot 28519 |
. . 3
⊢ (𝐺 ∈ 𝑉 → ((𝐹 ∘ 𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹 ∘ 𝐻):𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (((𝐹 ∘ 𝐻)‘𝑎) − ((𝐹 ∘ 𝐻)‘𝑏)) = (𝑎 − 𝑏)))) |
| 30 | 3, 29 | syl 17 |
. 2
⊢ (𝜑 → ((𝐹 ∘ 𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹 ∘ 𝐻):𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (((𝐹 ∘ 𝐻)‘𝑎) − ((𝐹 ∘ 𝐻)‘𝑏)) = (𝑎 − 𝑏)))) |
| 31 | 9, 28, 30 | mpbir2and 713 |
1
⊢ (𝜑 → (𝐹 ∘ 𝐻) ∈ (𝐺Ismt𝐺)) |