![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > motf1o | Structured version Visualization version GIF version |
Description: Motions are bijections. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
ismot.p | β’ π = (BaseβπΊ) |
ismot.m | β’ β = (distβπΊ) |
motgrp.1 | β’ (π β πΊ β π) |
motco.2 | β’ (π β πΉ β (πΊIsmtπΊ)) |
Ref | Expression |
---|---|
motf1o | β’ (π β πΉ:πβ1-1-ontoβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | motco.2 | . . 3 β’ (π β πΉ β (πΊIsmtπΊ)) | |
2 | motgrp.1 | . . . 4 β’ (π β πΊ β π) | |
3 | ismot.p | . . . . 5 β’ π = (BaseβπΊ) | |
4 | ismot.m | . . . . 5 β’ β = (distβπΊ) | |
5 | 3, 4 | ismot 28219 | . . . 4 β’ (πΊ β π β (πΉ β (πΊIsmtπΊ) β (πΉ:πβ1-1-ontoβπ β§ βπ β π βπ β π ((πΉβπ) β (πΉβπ)) = (π β π)))) |
6 | 2, 5 | syl 17 | . . 3 β’ (π β (πΉ β (πΊIsmtπΊ) β (πΉ:πβ1-1-ontoβπ β§ βπ β π βπ β π ((πΉβπ) β (πΉβπ)) = (π β π)))) |
7 | 1, 6 | mpbid 231 | . 2 β’ (π β (πΉ:πβ1-1-ontoβπ β§ βπ β π βπ β π ((πΉβπ) β (πΉβπ)) = (π β π))) |
8 | 7 | simpld 494 | 1 β’ (π β πΉ:πβ1-1-ontoβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7412 Basecbs 17151 distcds 17213 Ismtcismt 28216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-ismt 28217 |
This theorem is referenced by: motcl 28223 motco 28224 cnvmot 28225 motcgrg 28228 |
Copyright terms: Public domain | W3C validator |