MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motf1o Structured version   Visualization version   GIF version

Theorem motf1o 28561
Description: Motions are bijections. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motco.2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motf1o (𝜑𝐹:𝑃1-1-onto𝑃)

Proof of Theorem motf1o
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motco.2 . . 3 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
2 motgrp.1 . . . 4 (𝜑𝐺𝑉)
3 ismot.p . . . . 5 𝑃 = (Base‘𝐺)
4 ismot.m . . . . 5 = (dist‘𝐺)
53, 4ismot 28558 . . . 4 (𝐺𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
62, 5syl 17 . . 3 (𝜑 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
71, 6mpbid 232 . 2 (𝜑 → (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏)))
87simpld 494 1 (𝜑𝐹:𝑃1-1-onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Basecbs 17245  distcds 17307  Ismtcismt 28555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-ismt 28556
This theorem is referenced by:  motcl  28562  motco  28563  cnvmot  28564  motcgrg  28567
  Copyright terms: Public domain W3C validator