| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > motf1o | Structured version Visualization version GIF version | ||
| Description: Motions are bijections. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismot.m | ⊢ − = (dist‘𝐺) |
| motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| motco.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
| Ref | Expression |
|---|---|
| motf1o | ⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | motco.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
| 2 | motgrp.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 3 | ismot.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | ismot.m | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 5 | 3, 4 | ismot 28438 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏))) |
| 8 | 7 | simpld 494 | 1 ⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 distcds 17205 Ismtcismt 28435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-ismt 28436 |
| This theorem is referenced by: motcl 28442 motco 28443 cnvmot 28444 motcgrg 28447 |
| Copyright terms: Public domain | W3C validator |