MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetdcn2 Structured version   Visualization version   GIF version

Theorem xmetdcn2 23998
Description: The metric function of an extended metric space is always continuous in the topology generated by it. In this variation of xmetdcn 23999 we use the metric topology instead of the order topology on *, which makes the theorem a bit stronger. Since +∞ is an isolated point in the metric topology, this is saying that for any points 𝐴, 𝐵 which are an infinite distance apart, there is a product neighborhood around 𝐴, 𝐵 such that 𝑑(𝑎, 𝑏) = +∞ for any 𝑎 near 𝐴 and 𝑏 near 𝐵, i.e., the distance function is locally constant +∞. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xmetdcn2.1 𝐽 = (MetOpen‘𝐷)
xmetdcn2.2 𝐶 = (dist‘ℝ*𝑠)
xmetdcn2.3 𝐾 = (MetOpen‘𝐶)
Assertion
Ref Expression
xmetdcn2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))

Proof of Theorem xmetdcn2
Dummy variables 𝑠 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetf 23480 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 rphalfcl 12756 . . . . 5 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
3 xmetdcn2.1 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
4 xmetdcn2.2 . . . . . . . 8 𝐶 = (dist‘ℝ*𝑠)
5 xmetdcn2.3 . . . . . . . 8 𝐾 = (MetOpen‘𝐶)
6 simp-4l 780 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝐷 ∈ (∞Met‘𝑋))
7 simplrl 774 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑥𝑋)
87ad2antrr 723 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑥𝑋)
9 simplrr 775 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑦𝑋)
109ad2antrr 723 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑦𝑋)
11 simpllr 773 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑟 ∈ ℝ+)
12 simplrl 774 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑧𝑋)
13 simplrr 775 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑤𝑋)
14 simprl 768 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → (𝑥𝐷𝑧) < (𝑟 / 2))
15 simprr 770 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → (𝑦𝐷𝑤) < (𝑟 / 2))
163, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15metdcnlem 23997 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)
1716ex 413 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
1817ralrimivva 3117 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
19 breq2 5083 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑥𝐷𝑧) < 𝑠 ↔ (𝑥𝐷𝑧) < (𝑟 / 2)))
20 breq2 5083 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑦𝐷𝑤) < 𝑠 ↔ (𝑦𝐷𝑤) < (𝑟 / 2)))
2119, 20anbi12d 631 . . . . . . . 8 (𝑠 = (𝑟 / 2) → (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) ↔ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))))
2221imbi1d 342 . . . . . . 7 (𝑠 = (𝑟 / 2) → ((((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟) ↔ (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)))
23222ralbidv 3125 . . . . . 6 (𝑠 = (𝑟 / 2) → (∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟) ↔ ∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)))
2423rspcev 3561 . . . . 5 (((𝑟 / 2) ∈ ℝ+ ∧ ∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
252, 18, 24syl2an2 683 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
2625ralrimiva 3110 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
2726ralrimivva 3117 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
28 id 22 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
294xrsxmet 23970 . . . 4 𝐶 ∈ (∞Met‘ℝ*)
3029a1i 11 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐶 ∈ (∞Met‘ℝ*))
313, 3, 5txmetcn 23702 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘ℝ*)) → (𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))))
3228, 30, 31mpd3an23 1462 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))))
331, 27, 32mpbir2and 710 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067   class class class wbr 5079   × cxp 5588  wf 6428  cfv 6432  (class class class)co 7271  *cxr 11009   < clt 11010   / cdiv 11632  2c2 12028  +crp 12729  distcds 16969  *𝑠cxrs 17209  ∞Metcxmet 20580  MetOpencmopn 20585   Cn ccn 22373   ×t ctx 22709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-icc 13085  df-fz 13239  df-fzo 13382  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-bl 20590  df-mopn 20591  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cn 22376  df-cnp 22377  df-tx 22711  df-hmeo 22904  df-xms 23471  df-tms 23473
This theorem is referenced by:  xmetdcn  23999
  Copyright terms: Public domain W3C validator