Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetdcn2 Structured version   Visualization version   GIF version

Theorem xmetdcn2 23452
 Description: The metric function of an extended metric space is always continuous in the topology generated by it. In this variation of xmetdcn 23453 we use the metric topology instead of the order topology on ℝ*, which makes the theorem a bit stronger. Since +∞ is an isolated point in the metric topology, this is saying that for any points 𝐴, 𝐵 which are an infinite distance apart, there is a product neighborhood around ⟨𝐴, 𝐵⟩ such that 𝑑(𝑎, 𝑏) = +∞ for any 𝑎 near 𝐴 and 𝑏 near 𝐵, i.e. the distance function is locally constant +∞. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xmetdcn2.1 𝐽 = (MetOpen‘𝐷)
xmetdcn2.2 𝐶 = (dist‘ℝ*𝑠)
xmetdcn2.3 𝐾 = (MetOpen‘𝐶)
Assertion
Ref Expression
xmetdcn2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))

Proof of Theorem xmetdcn2
Dummy variables 𝑠 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetf 22946 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 rphalfcl 12407 . . . . 5 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
3 xmetdcn2.1 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
4 xmetdcn2.2 . . . . . . . 8 𝐶 = (dist‘ℝ*𝑠)
5 xmetdcn2.3 . . . . . . . 8 𝐾 = (MetOpen‘𝐶)
6 simp-4l 782 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝐷 ∈ (∞Met‘𝑋))
7 simplrl 776 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑥𝑋)
87ad2antrr 725 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑥𝑋)
9 simplrr 777 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑦𝑋)
109ad2antrr 725 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑦𝑋)
11 simpllr 775 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑟 ∈ ℝ+)
12 simplrl 776 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑧𝑋)
13 simplrr 777 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → 𝑤𝑋)
14 simprl 770 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → (𝑥𝐷𝑧) < (𝑟 / 2))
15 simprr 772 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → (𝑦𝐷𝑤) < (𝑟 / 2))
163, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15metdcnlem 23451 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) ∧ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)
1716ex 416 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧𝑋𝑤𝑋)) → (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
1817ralrimivva 3156 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → ∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
19 breq2 5035 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑥𝐷𝑧) < 𝑠 ↔ (𝑥𝐷𝑧) < (𝑟 / 2)))
20 breq2 5035 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑦𝐷𝑤) < 𝑠 ↔ (𝑦𝐷𝑤) < (𝑟 / 2)))
2119, 20anbi12d 633 . . . . . . . 8 (𝑠 = (𝑟 / 2) → (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) ↔ ((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2))))
2221imbi1d 345 . . . . . . 7 (𝑠 = (𝑟 / 2) → ((((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟) ↔ (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)))
23222ralbidv 3164 . . . . . 6 (𝑠 = (𝑟 / 2) → (∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟) ↔ ∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)))
2423rspcev 3571 . . . . 5 (((𝑟 / 2) ∈ ℝ+ ∧ ∀𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < (𝑟 / 2) ∧ (𝑦𝐷𝑤) < (𝑟 / 2)) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
252, 18, 24syl2an2 685 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
2625ralrimiva 3149 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
2726ralrimivva 3156 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))
28 id 22 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
294xrsxmet 23424 . . . 4 𝐶 ∈ (∞Met‘ℝ*)
3029a1i 11 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐶 ∈ (∞Met‘ℝ*))
313, 3, 5txmetcn 23165 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘ℝ*)) → (𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))))
3228, 30, 31mpd3an23 1460 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧𝑋𝑤𝑋 (((𝑥𝐷𝑧) < 𝑠 ∧ (𝑦𝐷𝑤) < 𝑠) → ((𝑥𝐷𝑦)𝐶(𝑧𝐷𝑤)) < 𝑟))))
331, 27, 32mpbir2and 712 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107   class class class wbr 5031   × cxp 5518  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136  ℝ*cxr 10666   < clt 10667   / cdiv 11289  2c2 11683  ℝ+crp 12380  distcds 16569  ℝ*𝑠cxrs 16768  ∞Metcxmet 20080  MetOpencmopn 20085   Cn ccn 21839   ×t ctx 22175 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-fi 8862  df-sup 8893  df-inf 8894  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-q 12340  df-rp 12381  df-xneg 12498  df-xadd 12499  df-xmul 12500  df-icc 12736  df-fz 12889  df-fzo 13032  df-seq 13368  df-exp 13429  df-hash 13690  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-bl 20090  df-mopn 20091  df-top 21509  df-topon 21526  df-topsp 21548  df-bases 21561  df-cn 21842  df-cnp 21843  df-tx 22177  df-hmeo 22370  df-xms 22937  df-tms 22939 This theorem is referenced by:  xmetdcn  23453
 Copyright terms: Public domain W3C validator