![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlem1ri | Structured version Visualization version GIF version |
Description: When the vote on the first tie is for A, the first vote is also for A on the reverse counting. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlem1ri | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ (𝑅‘𝐶) ↔ (𝐼‘𝐶) ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
3 | nnaddcl 11457 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
4 | 1, 2, 3 | mp2an 679 | . . . . 5 ⊢ (𝑀 + 𝑁) ∈ ℕ |
5 | nnuz 12089 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
6 | 4, 5 | eleqtri 2858 | . . . 4 ⊢ (𝑀 + 𝑁) ∈ (ℤ≥‘1) |
7 | eluzfz1 12724 | . . . 4 ⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘1) → 1 ∈ (1...(𝑀 + 𝑁))) | |
8 | 6, 7 | mp1i 13 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ (1...(𝑀 + 𝑁))) |
9 | ballotth.o | . . . . . 6 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
10 | ballotth.p | . . . . . 6 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
11 | ballotth.f | . . . . . 6 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
12 | ballotth.e | . . . . . 6 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
13 | ballotth.mgtn | . . . . . 6 ⊢ 𝑁 < 𝑀 | |
14 | ballotth.i | . . . . . 6 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
15 | 1, 2, 9, 10, 11, 12, 13, 14 | ballotlemiex 31405 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
16 | 15 | simpld 487 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
17 | elfzle1 12720 | . . . 4 ⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → 1 ≤ (𝐼‘𝐶)) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ≤ (𝐼‘𝐶)) |
19 | ballotth.s | . . . 4 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
20 | ballotth.r | . . . 4 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
21 | 1, 2, 9, 10, 11, 12, 13, 14, 19, 20 | ballotlemrv1 31424 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ (1...(𝑀 + 𝑁)) ∧ 1 ≤ (𝐼‘𝐶)) → (1 ∈ (𝑅‘𝐶) ↔ (((𝐼‘𝐶) + 1) − 1) ∈ 𝐶)) |
22 | 8, 18, 21 | mpd3an23 1442 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ (𝑅‘𝐶) ↔ (((𝐼‘𝐶) + 1) − 1) ∈ 𝐶)) |
23 | elfzelz 12718 | . . . . . 6 ⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ ℤ) | |
24 | 16, 23 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) |
25 | 24 | zcnd 11895 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℂ) |
26 | 1cnd 10428 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℂ) | |
27 | 25, 26 | pncand 10793 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (((𝐼‘𝐶) + 1) − 1) = (𝐼‘𝐶)) |
28 | 27 | eleq1d 2844 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((((𝐼‘𝐶) + 1) − 1) ∈ 𝐶 ↔ (𝐼‘𝐶) ∈ 𝐶)) |
29 | 22, 28 | bitrd 271 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ (𝑅‘𝐶) ↔ (𝐼‘𝐶) ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 ∀wral 3082 {crab 3086 ∖ cdif 3820 ∩ cin 3822 ifcif 4344 𝒫 cpw 4416 class class class wbr 4923 ↦ cmpt 5002 “ cima 5404 ‘cfv 6182 (class class class)co 6970 infcinf 8694 ℝcr 10328 0cc0 10329 1c1 10330 + caddc 10332 < clt 10468 ≤ cle 10469 − cmin 10664 / cdiv 11092 ℕcn 11433 ℤcz 11787 ℤ≥cuz 12052 ...cfz 12702 ♯chash 13499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-oadd 7903 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-sup 8695 df-inf 8696 df-dju 9118 df-card 9156 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-2 11497 df-n0 11702 df-z 11788 df-uz 12053 df-rp 12199 df-fz 12703 df-hash 13500 |
This theorem is referenced by: ballotlem7 31439 |
Copyright terms: Public domain | W3C validator |