![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlem1ri | Structured version Visualization version GIF version |
Description: When the vote on the first tie is for A, the first vote is also for A on the reverse counting. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlem1ri | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ (𝑅‘𝐶) ↔ (𝐼‘𝐶) ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
3 | nnaddcl 12222 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
4 | 1, 2, 3 | mp2an 691 | . . . . 5 ⊢ (𝑀 + 𝑁) ∈ ℕ |
5 | nnuz 12852 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
6 | 4, 5 | eleqtri 2832 | . . . 4 ⊢ (𝑀 + 𝑁) ∈ (ℤ≥‘1) |
7 | eluzfz1 13495 | . . . 4 ⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘1) → 1 ∈ (1...(𝑀 + 𝑁))) | |
8 | 6, 7 | mp1i 13 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ (1...(𝑀 + 𝑁))) |
9 | ballotth.o | . . . . . 6 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
10 | ballotth.p | . . . . . 6 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
11 | ballotth.f | . . . . . 6 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
12 | ballotth.e | . . . . . 6 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
13 | ballotth.mgtn | . . . . . 6 ⊢ 𝑁 < 𝑀 | |
14 | ballotth.i | . . . . . 6 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
15 | 1, 2, 9, 10, 11, 12, 13, 14 | ballotlemiex 33431 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
16 | 15 | simpld 496 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
17 | elfzle1 13491 | . . . 4 ⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → 1 ≤ (𝐼‘𝐶)) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ≤ (𝐼‘𝐶)) |
19 | ballotth.s | . . . 4 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
20 | ballotth.r | . . . 4 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
21 | 1, 2, 9, 10, 11, 12, 13, 14, 19, 20 | ballotlemrv1 33450 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ (1...(𝑀 + 𝑁)) ∧ 1 ≤ (𝐼‘𝐶)) → (1 ∈ (𝑅‘𝐶) ↔ (((𝐼‘𝐶) + 1) − 1) ∈ 𝐶)) |
22 | 8, 18, 21 | mpd3an23 1464 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ (𝑅‘𝐶) ↔ (((𝐼‘𝐶) + 1) − 1) ∈ 𝐶)) |
23 | 16 | elfzelzd 13489 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) |
24 | 23 | zcnd 12654 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℂ) |
25 | 1cnd 11196 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℂ) | |
26 | 24, 25 | pncand 11559 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (((𝐼‘𝐶) + 1) − 1) = (𝐼‘𝐶)) |
27 | 26 | eleq1d 2819 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((((𝐼‘𝐶) + 1) − 1) ∈ 𝐶 ↔ (𝐼‘𝐶) ∈ 𝐶)) |
28 | 22, 27 | bitrd 279 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ (𝑅‘𝐶) ↔ (𝐼‘𝐶) ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {crab 3433 ∖ cdif 3943 ∩ cin 3945 ifcif 4524 𝒫 cpw 4598 class class class wbr 5144 ↦ cmpt 5227 “ cima 5675 ‘cfv 6535 (class class class)co 7396 infcinf 9423 ℝcr 11096 0cc0 11097 1c1 11098 + caddc 11100 < clt 11235 ≤ cle 11236 − cmin 11431 / cdiv 11858 ℕcn 12199 ℤcz 12545 ℤ≥cuz 12809 ...cfz 13471 ♯chash 14277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-oadd 8457 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-sup 9424 df-inf 9425 df-dju 9883 df-card 9921 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-n0 12460 df-z 12546 df-uz 12810 df-rp 12962 df-fz 13472 df-hash 14278 |
This theorem is referenced by: ballotlem7 33465 |
Copyright terms: Public domain | W3C validator |