Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem1ri Structured version   Visualization version   GIF version

Theorem ballotlem1ri 34572
Description: When the vote on the first tie is for A, the first vote is also for A on the reverse counting. (Contributed by Thierry Arnoux, 18-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlem1ri (𝐶 ∈ (𝑂𝐸) → (1 ∈ (𝑅𝐶) ↔ (𝐼𝐶) ∈ 𝐶))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑐   𝑥,𝐶   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁
Allowed substitution hints:   𝐶(𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐼(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlem1ri
StepHypRef Expression
1 ballotth.m . . . . . 6 𝑀 ∈ ℕ
2 ballotth.n . . . . . 6 𝑁 ∈ ℕ
3 nnaddcl 12268 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
41, 2, 3mp2an 692 . . . . 5 (𝑀 + 𝑁) ∈ ℕ
5 nnuz 12900 . . . . 5 ℕ = (ℤ‘1)
64, 5eleqtri 2833 . . . 4 (𝑀 + 𝑁) ∈ (ℤ‘1)
7 eluzfz1 13553 . . . 4 ((𝑀 + 𝑁) ∈ (ℤ‘1) → 1 ∈ (1...(𝑀 + 𝑁)))
86, 7mp1i 13 . . 3 (𝐶 ∈ (𝑂𝐸) → 1 ∈ (1...(𝑀 + 𝑁)))
9 ballotth.o . . . . . 6 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
10 ballotth.p . . . . . 6 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
11 ballotth.f . . . . . 6 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
12 ballotth.e . . . . . 6 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
13 ballotth.mgtn . . . . . 6 𝑁 < 𝑀
14 ballotth.i . . . . . 6 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
151, 2, 9, 10, 11, 12, 13, 14ballotlemiex 34539 . . . . 5 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1615simpld 494 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
17 elfzle1 13549 . . . 4 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → 1 ≤ (𝐼𝐶))
1816, 17syl 17 . . 3 (𝐶 ∈ (𝑂𝐸) → 1 ≤ (𝐼𝐶))
19 ballotth.s . . . 4 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
20 ballotth.r . . . 4 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
211, 2, 9, 10, 11, 12, 13, 14, 19, 20ballotlemrv1 34558 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ (1...(𝑀 + 𝑁)) ∧ 1 ≤ (𝐼𝐶)) → (1 ∈ (𝑅𝐶) ↔ (((𝐼𝐶) + 1) − 1) ∈ 𝐶))
228, 18, 21mpd3an23 1465 . 2 (𝐶 ∈ (𝑂𝐸) → (1 ∈ (𝑅𝐶) ↔ (((𝐼𝐶) + 1) − 1) ∈ 𝐶))
2316elfzelzd 13547 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
2423zcnd 12703 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℂ)
25 1cnd 11235 . . . 4 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℂ)
2624, 25pncand 11600 . . 3 (𝐶 ∈ (𝑂𝐸) → (((𝐼𝐶) + 1) − 1) = (𝐼𝐶))
2726eleq1d 2820 . 2 (𝐶 ∈ (𝑂𝐸) → ((((𝐼𝐶) + 1) − 1) ∈ 𝐶 ↔ (𝐼𝐶) ∈ 𝐶))
2822, 27bitrd 279 1 (𝐶 ∈ (𝑂𝐸) → (1 ∈ (𝑅𝐶) ↔ (𝐼𝐶) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3052  {crab 3420  cdif 3928  cin 3930  ifcif 4505  𝒫 cpw 4580   class class class wbr 5124  cmpt 5206  cima 5662  cfv 6536  (class class class)co 7410  infcinf 9458  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  cz 12593  cuz 12857  ...cfz 13529  chash 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-hash 14354
This theorem is referenced by:  ballotlem7  34573
  Copyright terms: Public domain W3C validator