![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlem1ri | Structured version Visualization version GIF version |
Description: When the vote on the first tie is for A, the first vote is also for A on the reverse counting. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlem1ri | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ (𝑅‘𝐶) ↔ (𝐼‘𝐶) ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
3 | nnaddcl 12231 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
4 | 1, 2, 3 | mp2an 690 | . . . . 5 ⊢ (𝑀 + 𝑁) ∈ ℕ |
5 | nnuz 12861 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
6 | 4, 5 | eleqtri 2831 | . . . 4 ⊢ (𝑀 + 𝑁) ∈ (ℤ≥‘1) |
7 | eluzfz1 13504 | . . . 4 ⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘1) → 1 ∈ (1...(𝑀 + 𝑁))) | |
8 | 6, 7 | mp1i 13 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ (1...(𝑀 + 𝑁))) |
9 | ballotth.o | . . . . . 6 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
10 | ballotth.p | . . . . . 6 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
11 | ballotth.f | . . . . . 6 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
12 | ballotth.e | . . . . . 6 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
13 | ballotth.mgtn | . . . . . 6 ⊢ 𝑁 < 𝑀 | |
14 | ballotth.i | . . . . . 6 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
15 | 1, 2, 9, 10, 11, 12, 13, 14 | ballotlemiex 33488 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
16 | 15 | simpld 495 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
17 | elfzle1 13500 | . . . 4 ⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → 1 ≤ (𝐼‘𝐶)) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ≤ (𝐼‘𝐶)) |
19 | ballotth.s | . . . 4 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
20 | ballotth.r | . . . 4 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
21 | 1, 2, 9, 10, 11, 12, 13, 14, 19, 20 | ballotlemrv1 33507 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ (1...(𝑀 + 𝑁)) ∧ 1 ≤ (𝐼‘𝐶)) → (1 ∈ (𝑅‘𝐶) ↔ (((𝐼‘𝐶) + 1) − 1) ∈ 𝐶)) |
22 | 8, 18, 21 | mpd3an23 1463 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ (𝑅‘𝐶) ↔ (((𝐼‘𝐶) + 1) − 1) ∈ 𝐶)) |
23 | 16 | elfzelzd 13498 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) |
24 | 23 | zcnd 12663 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℂ) |
25 | 1cnd 11205 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℂ) | |
26 | 24, 25 | pncand 11568 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (((𝐼‘𝐶) + 1) − 1) = (𝐼‘𝐶)) |
27 | 26 | eleq1d 2818 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((((𝐼‘𝐶) + 1) − 1) ∈ 𝐶 ↔ (𝐼‘𝐶) ∈ 𝐶)) |
28 | 22, 27 | bitrd 278 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1 ∈ (𝑅‘𝐶) ↔ (𝐼‘𝐶) ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {crab 3432 ∖ cdif 3944 ∩ cin 3946 ifcif 4527 𝒫 cpw 4601 class class class wbr 5147 ↦ cmpt 5230 “ cima 5678 ‘cfv 6540 (class class class)co 7405 infcinf 9432 ℝcr 11105 0cc0 11106 1c1 11107 + caddc 11109 < clt 11244 ≤ cle 11245 − cmin 11440 / cdiv 11867 ℕcn 12208 ℤcz 12554 ℤ≥cuz 12818 ...cfz 13480 ♯chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-hash 14287 |
This theorem is referenced by: ballotlem7 33522 |
Copyright terms: Public domain | W3C validator |