| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusvsval | Structured version Visualization version GIF version | ||
| Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| eqgvscpbl.v | ⊢ 𝐵 = (Base‘𝑀) |
| eqgvscpbl.e | ⊢ ∼ = (𝑀 ~QG 𝐺) |
| eqgvscpbl.s | ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) |
| eqgvscpbl.p | ⊢ · = ( ·𝑠 ‘𝑀) |
| eqgvscpbl.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| eqgvscpbl.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
| eqgvscpbl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑆) |
| qusvsval.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
| qusvsval.m | ⊢ ∙ = ( ·𝑠 ‘𝑁) |
| qusvsval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| qusvsval | ⊢ (𝜑 → (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgvscpbl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑆) | |
| 2 | qusvsval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | qusvsval.n | . . . . . 6 ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))) |
| 5 | eqgvscpbl.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝑀)) |
| 7 | eqid 2734 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
| 8 | ovex 7446 | . . . . . 6 ⊢ (𝑀 ~QG 𝐺) ∈ V | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑀 ~QG 𝐺) ∈ V) |
| 10 | eqgvscpbl.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 11 | 4, 6, 7, 9, 10 | qusval 17559 | . . . 4 ⊢ (𝜑 → 𝑁 = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀)) |
| 12 | 4, 6, 7, 9, 10 | quslem 17560 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)):𝐵–onto→(𝐵 / (𝑀 ~QG 𝐺))) |
| 13 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 14 | eqgvscpbl.s | . . . 4 ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) | |
| 15 | eqgvscpbl.p | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 16 | qusvsval.m | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑁) | |
| 17 | eqgvscpbl.e | . . . . 5 ⊢ ∼ = (𝑀 ~QG 𝐺) | |
| 18 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑀 ∈ LMod) |
| 19 | eqgvscpbl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝐺 ∈ (LSubSp‘𝑀)) |
| 21 | simpr1 1194 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑘 ∈ 𝑆) | |
| 22 | simpr2 1195 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑢 ∈ 𝐵) | |
| 23 | simpr3 1196 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑣 ∈ 𝐵) | |
| 24 | 5, 17, 14, 15, 18, 20, 21, 3, 16, 7, 22, 23 | qusvscpbl 33319 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑢) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑣) → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑢)) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑣)))) |
| 25 | 11, 6, 12, 10, 13, 14, 15, 16, 24 | imasvscaval 17555 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 ∙ ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋))) |
| 26 | 1, 2, 25 | mpd3an23 1464 | . 2 ⊢ (𝜑 → (𝐾 ∙ ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋))) |
| 27 | eceq1 8766 | . . . . 5 ⊢ (𝑥 = 𝑋 → [𝑥](𝑀 ~QG 𝐺) = [𝑋](𝑀 ~QG 𝐺)) | |
| 28 | ecexg 8731 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑋](𝑀 ~QG 𝐺) ∈ V) | |
| 29 | 8, 28 | ax-mp 5 | . . . . 5 ⊢ [𝑋](𝑀 ~QG 𝐺) ∈ V |
| 30 | 27, 7, 29 | fvmpt 6996 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺)) |
| 31 | 2, 30 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺)) |
| 32 | 31 | oveq2d 7429 | . 2 ⊢ (𝜑 → (𝐾 ∙ ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺))) |
| 33 | 5, 13, 15, 14 | lmodvscl 20845 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 · 𝑋) ∈ 𝐵) |
| 34 | 10, 1, 2, 33 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐾 · 𝑋) ∈ 𝐵) |
| 35 | eceq1 8766 | . . . 4 ⊢ (𝑥 = (𝐾 · 𝑋) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) | |
| 36 | ecexg 8731 | . . . . 5 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V) | |
| 37 | 8, 36 | ax-mp 5 | . . . 4 ⊢ [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V |
| 38 | 35, 7, 37 | fvmpt 6996 | . . 3 ⊢ ((𝐾 · 𝑋) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
| 39 | 34, 38 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
| 40 | 26, 32, 39 | 3eqtr3d 2777 | 1 ⊢ (𝜑 → (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 [cec 8725 / cqs 8726 Basecbs 17230 Scalarcsca 17277 ·𝑠 cvsca 17278 /s cqus 17522 ~QG cqg 19110 LModclmod 20827 LSubSpclss 20898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-ec 8729 df-qs 8733 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-0g 17458 df-imas 17525 df-qus 17526 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-eqg 19113 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-lmod 20829 df-lss 20899 |
| This theorem is referenced by: lmhmqusker 33385 |
| Copyright terms: Public domain | W3C validator |