| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusvsval | Structured version Visualization version GIF version | ||
| Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| eqgvscpbl.v | ⊢ 𝐵 = (Base‘𝑀) |
| eqgvscpbl.e | ⊢ ∼ = (𝑀 ~QG 𝐺) |
| eqgvscpbl.s | ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) |
| eqgvscpbl.p | ⊢ · = ( ·𝑠 ‘𝑀) |
| eqgvscpbl.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| eqgvscpbl.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
| eqgvscpbl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑆) |
| qusvsval.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
| qusvsval.m | ⊢ ∙ = ( ·𝑠 ‘𝑁) |
| qusvsval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| qusvsval | ⊢ (𝜑 → (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgvscpbl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑆) | |
| 2 | qusvsval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | qusvsval.n | . . . . . 6 ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))) |
| 5 | eqgvscpbl.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝑀)) |
| 7 | eqid 2735 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
| 8 | ovex 7438 | . . . . . 6 ⊢ (𝑀 ~QG 𝐺) ∈ V | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑀 ~QG 𝐺) ∈ V) |
| 10 | eqgvscpbl.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 11 | 4, 6, 7, 9, 10 | qusval 17556 | . . . 4 ⊢ (𝜑 → 𝑁 = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀)) |
| 12 | 4, 6, 7, 9, 10 | quslem 17557 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)):𝐵–onto→(𝐵 / (𝑀 ~QG 𝐺))) |
| 13 | eqid 2735 | . . . 4 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 14 | eqgvscpbl.s | . . . 4 ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) | |
| 15 | eqgvscpbl.p | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 16 | qusvsval.m | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑁) | |
| 17 | eqgvscpbl.e | . . . . 5 ⊢ ∼ = (𝑀 ~QG 𝐺) | |
| 18 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑀 ∈ LMod) |
| 19 | eqgvscpbl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝐺 ∈ (LSubSp‘𝑀)) |
| 21 | simpr1 1195 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑘 ∈ 𝑆) | |
| 22 | simpr2 1196 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑢 ∈ 𝐵) | |
| 23 | simpr3 1197 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑣 ∈ 𝐵) | |
| 24 | 5, 17, 14, 15, 18, 20, 21, 3, 16, 7, 22, 23 | qusvscpbl 33366 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑢) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑣) → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑢)) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑣)))) |
| 25 | 11, 6, 12, 10, 13, 14, 15, 16, 24 | imasvscaval 17552 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 ∙ ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋))) |
| 26 | 1, 2, 25 | mpd3an23 1465 | . 2 ⊢ (𝜑 → (𝐾 ∙ ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋))) |
| 27 | eceq1 8758 | . . . . 5 ⊢ (𝑥 = 𝑋 → [𝑥](𝑀 ~QG 𝐺) = [𝑋](𝑀 ~QG 𝐺)) | |
| 28 | ecexg 8723 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑋](𝑀 ~QG 𝐺) ∈ V) | |
| 29 | 8, 28 | ax-mp 5 | . . . . 5 ⊢ [𝑋](𝑀 ~QG 𝐺) ∈ V |
| 30 | 27, 7, 29 | fvmpt 6986 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺)) |
| 31 | 2, 30 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺)) |
| 32 | 31 | oveq2d 7421 | . 2 ⊢ (𝜑 → (𝐾 ∙ ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺))) |
| 33 | 5, 13, 15, 14 | lmodvscl 20835 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 · 𝑋) ∈ 𝐵) |
| 34 | 10, 1, 2, 33 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐾 · 𝑋) ∈ 𝐵) |
| 35 | eceq1 8758 | . . . 4 ⊢ (𝑥 = (𝐾 · 𝑋) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) | |
| 36 | ecexg 8723 | . . . . 5 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V) | |
| 37 | 8, 36 | ax-mp 5 | . . . 4 ⊢ [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V |
| 38 | 35, 7, 37 | fvmpt 6986 | . . 3 ⊢ ((𝐾 · 𝑋) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
| 39 | 34, 38 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
| 40 | 26, 32, 39 | 3eqtr3d 2778 | 1 ⊢ (𝜑 → (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 [cec 8717 / cqs 8718 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 /s cqus 17519 ~QG cqg 19105 LModclmod 20817 LSubSpclss 20888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-ec 8721 df-qs 8725 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-0g 17455 df-imas 17522 df-qus 17523 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-eqg 19108 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-lmod 20819 df-lss 20889 |
| This theorem is referenced by: lmhmqusker 33432 |
| Copyright terms: Public domain | W3C validator |