![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusvsval | Structured version Visualization version GIF version |
Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
eqgvscpbl.v | ⊢ 𝐵 = (Base‘𝑀) |
eqgvscpbl.e | ⊢ ∼ = (𝑀 ~QG 𝐺) |
eqgvscpbl.s | ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) |
eqgvscpbl.p | ⊢ · = ( ·𝑠 ‘𝑀) |
eqgvscpbl.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
eqgvscpbl.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
eqgvscpbl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑆) |
qusvsval.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
qusvsval.m | ⊢ ∙ = ( ·𝑠 ‘𝑁) |
qusvsval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
qusvsval | ⊢ (𝜑 → (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqgvscpbl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑆) | |
2 | qusvsval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | qusvsval.n | . . . . . 6 ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))) |
5 | eqgvscpbl.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝑀)) |
7 | eqid 2740 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
8 | ovex 7481 | . . . . . 6 ⊢ (𝑀 ~QG 𝐺) ∈ V | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑀 ~QG 𝐺) ∈ V) |
10 | eqgvscpbl.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
11 | 4, 6, 7, 9, 10 | qusval 17602 | . . . 4 ⊢ (𝜑 → 𝑁 = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀)) |
12 | 4, 6, 7, 9, 10 | quslem 17603 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)):𝐵–onto→(𝐵 / (𝑀 ~QG 𝐺))) |
13 | eqid 2740 | . . . 4 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
14 | eqgvscpbl.s | . . . 4 ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) | |
15 | eqgvscpbl.p | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
16 | qusvsval.m | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑁) | |
17 | eqgvscpbl.e | . . . . 5 ⊢ ∼ = (𝑀 ~QG 𝐺) | |
18 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑀 ∈ LMod) |
19 | eqgvscpbl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝐺 ∈ (LSubSp‘𝑀)) |
21 | simpr1 1194 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑘 ∈ 𝑆) | |
22 | simpr2 1195 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑢 ∈ 𝐵) | |
23 | simpr3 1196 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → 𝑣 ∈ 𝐵) | |
24 | 5, 17, 14, 15, 18, 20, 21, 3, 16, 7, 22, 23 | qusvscpbl 33344 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑢) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑣) → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑢)) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑣)))) |
25 | 11, 6, 12, 10, 13, 14, 15, 16, 24 | imasvscaval 17598 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 ∙ ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋))) |
26 | 1, 2, 25 | mpd3an23 1463 | . 2 ⊢ (𝜑 → (𝐾 ∙ ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋))) |
27 | eceq1 8802 | . . . . 5 ⊢ (𝑥 = 𝑋 → [𝑥](𝑀 ~QG 𝐺) = [𝑋](𝑀 ~QG 𝐺)) | |
28 | ecexg 8767 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑋](𝑀 ~QG 𝐺) ∈ V) | |
29 | 8, 28 | ax-mp 5 | . . . . 5 ⊢ [𝑋](𝑀 ~QG 𝐺) ∈ V |
30 | 27, 7, 29 | fvmpt 7029 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺)) |
31 | 2, 30 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺)) |
32 | 31 | oveq2d 7464 | . 2 ⊢ (𝜑 → (𝐾 ∙ ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺))) |
33 | 5, 13, 15, 14 | lmodvscl 20898 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 · 𝑋) ∈ 𝐵) |
34 | 10, 1, 2, 33 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝐾 · 𝑋) ∈ 𝐵) |
35 | eceq1 8802 | . . . 4 ⊢ (𝑥 = (𝐾 · 𝑋) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) | |
36 | ecexg 8767 | . . . . 5 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V) | |
37 | 8, 36 | ax-mp 5 | . . . 4 ⊢ [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V |
38 | 35, 7, 37 | fvmpt 7029 | . . 3 ⊢ ((𝐾 · 𝑋) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
39 | 34, 38 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
40 | 26, 32, 39 | 3eqtr3d 2788 | 1 ⊢ (𝜑 → (𝐾 ∙ [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 [cec 8761 / cqs 8762 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 /s cqus 17565 ~QG cqg 19162 LModclmod 20880 LSubSpclss 20952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-ec 8765 df-qs 8769 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-eqg 19165 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-lmod 20882 df-lss 20953 |
This theorem is referenced by: lmhmqusker 33410 |
Copyright terms: Public domain | W3C validator |