Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusvsval Structured version   Visualization version   GIF version

Theorem qusvsval 33380
Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
qusvsval.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusvsval.m = ( ·𝑠𝑁)
qusvsval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
qusvsval (𝜑 → (𝐾 [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))

Proof of Theorem qusvsval
Dummy variables 𝑘 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgvscpbl.k . . 3 (𝜑𝐾𝑆)
2 qusvsval.x . . 3 (𝜑𝑋𝐵)
3 qusvsval.n . . . . . 6 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
43a1i 11 . . . . 5 (𝜑𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
5 eqgvscpbl.v . . . . . 6 𝐵 = (Base‘𝑀)
65a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝑀))
7 eqid 2737 . . . . 5 (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
8 ovex 7464 . . . . . 6 (𝑀 ~QG 𝐺) ∈ V
98a1i 11 . . . . 5 (𝜑 → (𝑀 ~QG 𝐺) ∈ V)
10 eqgvscpbl.m . . . . 5 (𝜑𝑀 ∈ LMod)
114, 6, 7, 9, 10qusval 17587 . . . 4 (𝜑𝑁 = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀))
124, 6, 7, 9, 10quslem 17588 . . . 4 (𝜑 → (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)):𝐵onto→(𝐵 / (𝑀 ~QG 𝐺)))
13 eqid 2737 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
14 eqgvscpbl.s . . . 4 𝑆 = (Base‘(Scalar‘𝑀))
15 eqgvscpbl.p . . . 4 · = ( ·𝑠𝑀)
16 qusvsval.m . . . 4 = ( ·𝑠𝑁)
17 eqgvscpbl.e . . . . 5 = (𝑀 ~QG 𝐺)
1810adantr 480 . . . . 5 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑀 ∈ LMod)
19 eqgvscpbl.g . . . . . 6 (𝜑𝐺 ∈ (LSubSp‘𝑀))
2019adantr 480 . . . . 5 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝐺 ∈ (LSubSp‘𝑀))
21 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑘𝑆)
22 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑢𝐵)
23 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑣𝐵)
245, 17, 14, 15, 18, 20, 21, 3, 16, 7, 22, 23qusvscpbl 33379 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → (((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑢) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑣) → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑢)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑣))))
2511, 6, 12, 10, 13, 14, 15, 16, 24imasvscaval 17583 . . 3 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)))
261, 2, 25mpd3an23 1465 . 2 (𝜑 → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)))
27 eceq1 8784 . . . . 5 (𝑥 = 𝑋 → [𝑥](𝑀 ~QG 𝐺) = [𝑋](𝑀 ~QG 𝐺))
28 ecexg 8749 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑋](𝑀 ~QG 𝐺) ∈ V)
298, 28ax-mp 5 . . . . 5 [𝑋](𝑀 ~QG 𝐺) ∈ V
3027, 7, 29fvmpt 7016 . . . 4 (𝑋𝐵 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺))
312, 30syl 17 . . 3 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺))
3231oveq2d 7447 . 2 (𝜑 → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = (𝐾 [𝑋](𝑀 ~QG 𝐺)))
335, 13, 15, 14lmodvscl 20876 . . . 4 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
3410, 1, 2, 33syl3anc 1373 . . 3 (𝜑 → (𝐾 · 𝑋) ∈ 𝐵)
35 eceq1 8784 . . . 4 (𝑥 = (𝐾 · 𝑋) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
36 ecexg 8749 . . . . 5 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V)
378, 36ax-mp 5 . . . 4 [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V
3835, 7, 37fvmpt 7016 . . 3 ((𝐾 · 𝑋) ∈ 𝐵 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
3934, 38syl 17 . 2 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
4026, 32, 393eqtr3d 2785 1 (𝜑 → (𝐾 [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cmpt 5225  cfv 6561  (class class class)co 7431  [cec 8743   / cqs 8744  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301   /s cqus 17550   ~QG cqg 19140  LModclmod 20858  LSubSpclss 20929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-0g 17486  df-imas 17553  df-qus 17554  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-eqg 19143  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930
This theorem is referenced by:  lmhmqusker  33445
  Copyright terms: Public domain W3C validator