Step | Hyp | Ref
| Expression |
1 | | eqgvscpbl.k |
. . 3
β’ (π β πΎ β π) |
2 | | qusvsval.x |
. . 3
β’ (π β π β π΅) |
3 | | qusvsval.n |
. . . . . 6
β’ π = (π /s (π ~QG πΊ)) |
4 | 3 | a1i 11 |
. . . . 5
β’ (π β π = (π /s (π ~QG πΊ))) |
5 | | eqgvscpbl.v |
. . . . . 6
β’ π΅ = (Baseβπ) |
6 | 5 | a1i 11 |
. . . . 5
β’ (π β π΅ = (Baseβπ)) |
7 | | eqid 2732 |
. . . . 5
β’ (π₯ β π΅ β¦ [π₯](π ~QG πΊ)) = (π₯ β π΅ β¦ [π₯](π ~QG πΊ)) |
8 | | ovex 7438 |
. . . . . 6
β’ (π ~QG πΊ) β V |
9 | 8 | a1i 11 |
. . . . 5
β’ (π β (π ~QG πΊ) β V) |
10 | | eqgvscpbl.m |
. . . . 5
β’ (π β π β LMod) |
11 | 4, 6, 7, 9, 10 | qusval 17484 |
. . . 4
β’ (π β π = ((π₯ β π΅ β¦ [π₯](π ~QG πΊ)) βs π)) |
12 | 4, 6, 7, 9, 10 | quslem 17485 |
. . . 4
β’ (π β (π₯ β π΅ β¦ [π₯](π ~QG πΊ)):π΅βontoβ(π΅ / (π ~QG πΊ))) |
13 | | eqid 2732 |
. . . 4
β’
(Scalarβπ) =
(Scalarβπ) |
14 | | eqgvscpbl.s |
. . . 4
β’ π =
(Baseβ(Scalarβπ)) |
15 | | eqgvscpbl.p |
. . . 4
β’ Β· = (
Β·π βπ) |
16 | | qusvsval.m |
. . . 4
β’ β = (
Β·π βπ) |
17 | | eqgvscpbl.e |
. . . . 5
β’ βΌ =
(π ~QG
πΊ) |
18 | 10 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π β§ π’ β π΅ β§ π£ β π΅)) β π β LMod) |
19 | | eqgvscpbl.g |
. . . . . 6
β’ (π β πΊ β (LSubSpβπ)) |
20 | 19 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π β§ π’ β π΅ β§ π£ β π΅)) β πΊ β (LSubSpβπ)) |
21 | | simpr1 1194 |
. . . . 5
β’ ((π β§ (π β π β§ π’ β π΅ β§ π£ β π΅)) β π β π) |
22 | | simpr2 1195 |
. . . . 5
β’ ((π β§ (π β π β§ π’ β π΅ β§ π£ β π΅)) β π’ β π΅) |
23 | | simpr3 1196 |
. . . . 5
β’ ((π β§ (π β π β§ π’ β π΅ β§ π£ β π΅)) β π£ β π΅) |
24 | 5, 17, 14, 15, 18, 20, 21, 3, 16, 7, 22, 23 | qusvscpbl 32454 |
. . . 4
β’ ((π β§ (π β π β§ π’ β π΅ β§ π£ β π΅)) β (((π₯ β π΅ β¦ [π₯](π ~QG πΊ))βπ’) = ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))βπ£) β ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))β(π Β· π’)) = ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))β(π Β· π£)))) |
25 | 11, 6, 12, 10, 13, 14, 15, 16, 24 | imasvscaval 17480 |
. . 3
β’ ((π β§ πΎ β π β§ π β π΅) β (πΎ β ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))βπ)) = ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))β(πΎ Β· π))) |
26 | 1, 2, 25 | mpd3an23 1463 |
. 2
β’ (π β (πΎ β ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))βπ)) = ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))β(πΎ Β· π))) |
27 | | eceq1 8737 |
. . . . 5
β’ (π₯ = π β [π₯](π ~QG πΊ) = [π](π ~QG πΊ)) |
28 | | ecexg 8703 |
. . . . . 6
β’ ((π ~QG πΊ) β V β [π](π ~QG πΊ) β V) |
29 | 8, 28 | ax-mp 5 |
. . . . 5
β’ [π](π ~QG πΊ) β V |
30 | 27, 7, 29 | fvmpt 6995 |
. . . 4
β’ (π β π΅ β ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))βπ) = [π](π ~QG πΊ)) |
31 | 2, 30 | syl 17 |
. . 3
β’ (π β ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))βπ) = [π](π ~QG πΊ)) |
32 | 31 | oveq2d 7421 |
. 2
β’ (π β (πΎ β ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))βπ)) = (πΎ β [π](π ~QG πΊ))) |
33 | 5, 13, 15, 14 | lmodvscl 20481 |
. . . 4
β’ ((π β LMod β§ πΎ β π β§ π β π΅) β (πΎ Β· π) β π΅) |
34 | 10, 1, 2, 33 | syl3anc 1371 |
. . 3
β’ (π β (πΎ Β· π) β π΅) |
35 | | eceq1 8737 |
. . . 4
β’ (π₯ = (πΎ Β· π) β [π₯](π ~QG πΊ) = [(πΎ Β· π)](π ~QG πΊ)) |
36 | | ecexg 8703 |
. . . . 5
β’ ((π ~QG πΊ) β V β [(πΎ Β· π)](π ~QG πΊ) β V) |
37 | 8, 36 | ax-mp 5 |
. . . 4
β’ [(πΎ Β· π)](π ~QG πΊ) β V |
38 | 35, 7, 37 | fvmpt 6995 |
. . 3
β’ ((πΎ Β· π) β π΅ β ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))β(πΎ Β· π)) = [(πΎ Β· π)](π ~QG πΊ)) |
39 | 34, 38 | syl 17 |
. 2
β’ (π β ((π₯ β π΅ β¦ [π₯](π ~QG πΊ))β(πΎ Β· π)) = [(πΎ Β· π)](π ~QG πΊ)) |
40 | 26, 32, 39 | 3eqtr3d 2780 |
1
β’ (π β (πΎ β [π](π ~QG πΊ)) = [(πΎ Β· π)](π ~QG πΊ)) |