Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusvsval Structured version   Visualization version   GIF version

Theorem qusvsval 33323
Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
qusvsval.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusvsval.m = ( ·𝑠𝑁)
qusvsval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
qusvsval (𝜑 → (𝐾 [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))

Proof of Theorem qusvsval
Dummy variables 𝑘 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgvscpbl.k . . 3 (𝜑𝐾𝑆)
2 qusvsval.x . . 3 (𝜑𝑋𝐵)
3 qusvsval.n . . . . . 6 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
43a1i 11 . . . . 5 (𝜑𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
5 eqgvscpbl.v . . . . . 6 𝐵 = (Base‘𝑀)
65a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝑀))
7 eqid 2729 . . . . 5 (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
8 ovex 7420 . . . . . 6 (𝑀 ~QG 𝐺) ∈ V
98a1i 11 . . . . 5 (𝜑 → (𝑀 ~QG 𝐺) ∈ V)
10 eqgvscpbl.m . . . . 5 (𝜑𝑀 ∈ LMod)
114, 6, 7, 9, 10qusval 17505 . . . 4 (𝜑𝑁 = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) “s 𝑀))
124, 6, 7, 9, 10quslem 17506 . . . 4 (𝜑 → (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)):𝐵onto→(𝐵 / (𝑀 ~QG 𝐺)))
13 eqid 2729 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
14 eqgvscpbl.s . . . 4 𝑆 = (Base‘(Scalar‘𝑀))
15 eqgvscpbl.p . . . 4 · = ( ·𝑠𝑀)
16 qusvsval.m . . . 4 = ( ·𝑠𝑁)
17 eqgvscpbl.e . . . . 5 = (𝑀 ~QG 𝐺)
1810adantr 480 . . . . 5 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑀 ∈ LMod)
19 eqgvscpbl.g . . . . . 6 (𝜑𝐺 ∈ (LSubSp‘𝑀))
2019adantr 480 . . . . 5 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝐺 ∈ (LSubSp‘𝑀))
21 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑘𝑆)
22 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑢𝐵)
23 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → 𝑣𝐵)
245, 17, 14, 15, 18, 20, 21, 3, 16, 7, 22, 23qusvscpbl 33322 . . . 4 ((𝜑 ∧ (𝑘𝑆𝑢𝐵𝑣𝐵)) → (((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑢) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑣) → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑢)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝑘 · 𝑣))))
2511, 6, 12, 10, 13, 14, 15, 16, 24imasvscaval 17501 . . 3 ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)))
261, 2, 25mpd3an23 1465 . 2 (𝜑 → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)))
27 eceq1 8710 . . . . 5 (𝑥 = 𝑋 → [𝑥](𝑀 ~QG 𝐺) = [𝑋](𝑀 ~QG 𝐺))
28 ecexg 8675 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑋](𝑀 ~QG 𝐺) ∈ V)
298, 28ax-mp 5 . . . . 5 [𝑋](𝑀 ~QG 𝐺) ∈ V
3027, 7, 29fvmpt 6968 . . . 4 (𝑋𝐵 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺))
312, 30syl 17 . . 3 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋) = [𝑋](𝑀 ~QG 𝐺))
3231oveq2d 7403 . 2 (𝜑 → (𝐾 ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘𝑋)) = (𝐾 [𝑋](𝑀 ~QG 𝐺)))
335, 13, 15, 14lmodvscl 20784 . . . 4 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
3410, 1, 2, 33syl3anc 1373 . . 3 (𝜑 → (𝐾 · 𝑋) ∈ 𝐵)
35 eceq1 8710 . . . 4 (𝑥 = (𝐾 · 𝑋) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
36 ecexg 8675 . . . . 5 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V)
378, 36ax-mp 5 . . . 4 [(𝐾 · 𝑋)](𝑀 ~QG 𝐺) ∈ V
3835, 7, 37fvmpt 6968 . . 3 ((𝐾 · 𝑋) ∈ 𝐵 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
3934, 38syl 17 . 2 (𝜑 → ((𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))‘(𝐾 · 𝑋)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
4026, 32, 393eqtr3d 2772 1 (𝜑 → (𝐾 [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cmpt 5188  cfv 6511  (class class class)co 7387  [cec 8669   / cqs 8670  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224   /s cqus 17468   ~QG cqg 19054  LModclmod 20766  LSubSpclss 20837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-eqg 19057  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-lmod 20768  df-lss 20838
This theorem is referenced by:  lmhmqusker  33388
  Copyright terms: Public domain W3C validator