MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmid Structured version   Visualization version   GIF version

Theorem ghmid 19240
Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmid.y 𝑌 = (0g𝑆)
ghmid.z 0 = (0g𝑇)
Assertion
Ref Expression
ghmid (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) = 0 )

Proof of Theorem ghmid
StepHypRef Expression
1 ghmgrp1 19236 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
2 eqid 2737 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
3 ghmid.y . . . . . . 7 𝑌 = (0g𝑆)
42, 3grpidcl 18983 . . . . . 6 (𝑆 ∈ Grp → 𝑌 ∈ (Base‘𝑆))
51, 4syl 17 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑌 ∈ (Base‘𝑆))
6 eqid 2737 . . . . . 6 (+g𝑆) = (+g𝑆)
7 eqid 2737 . . . . . 6 (+g𝑇) = (+g𝑇)
82, 6, 7ghmlin 19239 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑌 ∈ (Base‘𝑆) ∧ 𝑌 ∈ (Base‘𝑆)) → (𝐹‘(𝑌(+g𝑆)𝑌)) = ((𝐹𝑌)(+g𝑇)(𝐹𝑌)))
95, 5, 8mpd3an23 1465 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g𝑆)𝑌)) = ((𝐹𝑌)(+g𝑇)(𝐹𝑌)))
102, 6, 3grplid 18985 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑆)) → (𝑌(+g𝑆)𝑌) = 𝑌)
111, 5, 10syl2anc 584 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑌(+g𝑆)𝑌) = 𝑌)
1211fveq2d 6910 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g𝑆)𝑌)) = (𝐹𝑌))
139, 12eqtr3d 2779 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌))
14 ghmgrp2 19237 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
15 eqid 2737 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
162, 15ghmf 19238 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1716, 5ffvelcdmd 7105 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) ∈ (Base‘𝑇))
18 ghmid.z . . . . 5 0 = (0g𝑇)
1915, 7, 18grpid 18993 . . . 4 ((𝑇 ∈ Grp ∧ (𝐹𝑌) ∈ (Base‘𝑇)) → (((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌) ↔ 0 = (𝐹𝑌)))
2014, 17, 19syl2anc 584 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (((𝐹𝑌)(+g𝑇)(𝐹𝑌)) = (𝐹𝑌) ↔ 0 = (𝐹𝑌)))
2113, 20mpbid 232 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 0 = (𝐹𝑌))
2221eqcomd 2743 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹𝑌) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951   GrpHom cghm 19230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-ghm 19231
This theorem is referenced by:  ghminv  19241  ghmmhm  19244  ghmpreima  19256  f1ghm0to0  19263  kerf1ghm  19265  ghmqusker  19305  lactghmga  19423  nrhmzr  20537  zrinitorngc  20642  imadrhmcl  20798  srng0  20855  islmhm2  21037  zrh0  21524  chrrhm  21546  zndvds0  21569  ip0l  21654  evlslem2  22103  evlslem3  22104  evlslem6  22105  rhmmpl  22387  rhmply1vr1  22391  0mat2pmat  22742  nmolb2d  24739  nmoi  24749  nmoix  24750  nmoleub  24752  nmoleub2lem2  25149  nmhmcn  25153  dchrptlem2  27309  psgnid  33117  dimkerim  33678  lvecendof1f1o  33684  ricdrng1  42538  rhmpsr  42562
  Copyright terms: Public domain W3C validator