Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ghmid | Structured version Visualization version GIF version |
Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
ghmid.y | ⊢ 𝑌 = (0g‘𝑆) |
ghmid.z | ⊢ 0 = (0g‘𝑇) |
Ref | Expression |
---|---|
ghmid | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp1 18751 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
2 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | ghmid.y | . . . . . . 7 ⊢ 𝑌 = (0g‘𝑆) | |
4 | 2, 3 | grpidcl 18522 | . . . . . 6 ⊢ (𝑆 ∈ Grp → 𝑌 ∈ (Base‘𝑆)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑌 ∈ (Base‘𝑆)) |
6 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
7 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
8 | 2, 6, 7 | ghmlin 18754 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑌 ∈ (Base‘𝑆) ∧ 𝑌 ∈ (Base‘𝑆)) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
9 | 5, 5, 8 | mpd3an23 1461 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
10 | 2, 6, 3 | grplid 18524 | . . . . . 6 ⊢ ((𝑆 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑆)) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
11 | 1, 5, 10 | syl2anc 583 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
12 | 11 | fveq2d 6760 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = (𝐹‘𝑌)) |
13 | 9, 12 | eqtr3d 2780 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌)) |
14 | ghmgrp2 18752 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | |
15 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
16 | 2, 15 | ghmf 18753 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
17 | 16, 5 | ffvelrnd 6944 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) ∈ (Base‘𝑇)) |
18 | ghmid.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
19 | 15, 7, 18 | grpid 18530 | . . . 4 ⊢ ((𝑇 ∈ Grp ∧ (𝐹‘𝑌) ∈ (Base‘𝑇)) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
20 | 14, 17, 19 | syl2anc 583 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
21 | 13, 20 | mpbid 231 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 0 = (𝐹‘𝑌)) |
22 | 21 | eqcomd 2744 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Grpcgrp 18492 GrpHom cghm 18746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-ghm 18747 |
This theorem is referenced by: ghminv 18756 ghmmhm 18759 ghmpreima 18771 ghmf1 18778 lactghmga 18928 f1ghm0to0 19899 f1rhm0to0ALT 19900 kerf1ghm 19902 srng0 20035 islmhm2 20215 zrh0 20627 chrrhm 20647 zndvds0 20670 ip0l 20753 evlslem2 21199 evlslem3 21200 evlslem6 21201 0mat2pmat 21793 nmolb2d 23788 nmoi 23798 nmoix 23799 nmoleub 23801 nmoleub2lem2 24185 nmhmcn 24189 dchrptlem2 26318 psgnid 31266 dimkerim 31610 nrhmzr 45319 zrinitorngc 45446 |
Copyright terms: Public domain | W3C validator |