| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmid | Structured version Visualization version GIF version | ||
| Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmid.y | ⊢ 𝑌 = (0g‘𝑆) |
| ghmid.z | ⊢ 0 = (0g‘𝑇) |
| Ref | Expression |
|---|---|
| ghmid | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp1 19123 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
| 2 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | ghmid.y | . . . . . . 7 ⊢ 𝑌 = (0g‘𝑆) | |
| 4 | 2, 3 | grpidcl 18870 | . . . . . 6 ⊢ (𝑆 ∈ Grp → 𝑌 ∈ (Base‘𝑆)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑌 ∈ (Base‘𝑆)) |
| 6 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 7 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 8 | 2, 6, 7 | ghmlin 19126 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑌 ∈ (Base‘𝑆) ∧ 𝑌 ∈ (Base‘𝑆)) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
| 9 | 5, 5, 8 | mpd3an23 1465 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
| 10 | 2, 6, 3 | grplid 18872 | . . . . . 6 ⊢ ((𝑆 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑆)) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
| 11 | 1, 5, 10 | syl2anc 584 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
| 12 | 11 | fveq2d 6821 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = (𝐹‘𝑌)) |
| 13 | 9, 12 | eqtr3d 2767 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌)) |
| 14 | ghmgrp2 19124 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | |
| 15 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 16 | 2, 15 | ghmf 19125 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 17 | 16, 5 | ffvelcdmd 7013 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) ∈ (Base‘𝑇)) |
| 18 | ghmid.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
| 19 | 15, 7, 18 | grpid 18880 | . . . 4 ⊢ ((𝑇 ∈ Grp ∧ (𝐹‘𝑌) ∈ (Base‘𝑇)) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
| 20 | 14, 17, 19 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
| 21 | 13, 20 | mpbid 232 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 0 = (𝐹‘𝑌)) |
| 22 | 21 | eqcomd 2736 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 0gc0g 17335 Grpcgrp 18838 GrpHom cghm 19117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-ghm 19118 |
| This theorem is referenced by: ghminv 19128 ghmmhm 19131 ghmpreima 19143 f1ghm0to0 19150 kerf1ghm 19152 ghmqusker 19192 lactghmga 19310 nrhmzr 20445 zrinitorngc 20550 imadrhmcl 20705 srng0 20762 islmhm2 20965 zrh0 21443 chrrhm 21461 zndvds0 21480 ip0l 21566 evlslem2 22007 evlslem3 22008 evlslem6 22009 rhmmpl 22291 rhmply1vr1 22295 0mat2pmat 22644 nmolb2d 24626 nmoi 24636 nmoix 24637 nmoleub 24639 nmoleub2lem2 25036 nmhmcn 25040 dchrptlem2 27196 psgnid 33056 dimkerim 33630 lvecendof1f1o 33636 ricdrng1 42540 rhmpsr 42564 |
| Copyright terms: Public domain | W3C validator |