![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmid | Structured version Visualization version GIF version |
Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
ghmid.y | ⊢ 𝑌 = (0g‘𝑆) |
ghmid.z | ⊢ 0 = (0g‘𝑇) |
Ref | Expression |
---|---|
ghmid | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp1 19139 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
2 | eqid 2724 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | ghmid.y | . . . . . . 7 ⊢ 𝑌 = (0g‘𝑆) | |
4 | 2, 3 | grpidcl 18891 | . . . . . 6 ⊢ (𝑆 ∈ Grp → 𝑌 ∈ (Base‘𝑆)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑌 ∈ (Base‘𝑆)) |
6 | eqid 2724 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
7 | eqid 2724 | . . . . . 6 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
8 | 2, 6, 7 | ghmlin 19142 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑌 ∈ (Base‘𝑆) ∧ 𝑌 ∈ (Base‘𝑆)) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
9 | 5, 5, 8 | mpd3an23 1459 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
10 | 2, 6, 3 | grplid 18893 | . . . . . 6 ⊢ ((𝑆 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑆)) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
11 | 1, 5, 10 | syl2anc 583 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
12 | 11 | fveq2d 6886 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = (𝐹‘𝑌)) |
13 | 9, 12 | eqtr3d 2766 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌)) |
14 | ghmgrp2 19140 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | |
15 | eqid 2724 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
16 | 2, 15 | ghmf 19141 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
17 | 16, 5 | ffvelcdmd 7078 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) ∈ (Base‘𝑇)) |
18 | ghmid.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
19 | 15, 7, 18 | grpid 18901 | . . . 4 ⊢ ((𝑇 ∈ Grp ∧ (𝐹‘𝑌) ∈ (Base‘𝑇)) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
20 | 14, 17, 19 | syl2anc 583 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
21 | 13, 20 | mpbid 231 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 0 = (𝐹‘𝑌)) |
22 | 21 | eqcomd 2730 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ‘cfv 6534 (class class class)co 7402 Basecbs 17149 +gcplusg 17202 0gc0g 17390 Grpcgrp 18859 GrpHom cghm 19134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-0g 17392 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-grp 18862 df-ghm 19135 |
This theorem is referenced by: ghminv 19144 ghmmhm 19147 ghmpreima 19159 f1ghm0to0 19166 kerf1ghm 19168 lactghmga 19321 nrhmzr 20433 zrinitorngc 20534 imadrhmcl 20644 srng0 20699 islmhm2 20882 zrh0 21389 chrrhm 21411 zndvds0 21434 ip0l 21518 evlslem2 21973 evlslem3 21974 evlslem6 21975 0mat2pmat 22582 nmolb2d 24579 nmoi 24589 nmoix 24590 nmoleub 24592 nmoleub2lem2 24987 nmhmcn 24991 dchrptlem2 27138 psgnid 32749 ghmqusker 33027 dimkerim 33219 ricdrng1 41633 rhmmpl 41654 |
Copyright terms: Public domain | W3C validator |