![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmid | Structured version Visualization version GIF version |
Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
ghmid.y | ⊢ 𝑌 = (0g‘𝑆) |
ghmid.z | ⊢ 0 = (0g‘𝑇) |
Ref | Expression |
---|---|
ghmid | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp1 19258 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
2 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | ghmid.y | . . . . . . 7 ⊢ 𝑌 = (0g‘𝑆) | |
4 | 2, 3 | grpidcl 19005 | . . . . . 6 ⊢ (𝑆 ∈ Grp → 𝑌 ∈ (Base‘𝑆)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑌 ∈ (Base‘𝑆)) |
6 | eqid 2740 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
7 | eqid 2740 | . . . . . 6 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
8 | 2, 6, 7 | ghmlin 19261 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑌 ∈ (Base‘𝑆) ∧ 𝑌 ∈ (Base‘𝑆)) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
9 | 5, 5, 8 | mpd3an23 1463 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
10 | 2, 6, 3 | grplid 19007 | . . . . . 6 ⊢ ((𝑆 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑆)) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
11 | 1, 5, 10 | syl2anc 583 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
12 | 11 | fveq2d 6924 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = (𝐹‘𝑌)) |
13 | 9, 12 | eqtr3d 2782 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌)) |
14 | ghmgrp2 19259 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | |
15 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
16 | 2, 15 | ghmf 19260 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
17 | 16, 5 | ffvelcdmd 7119 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) ∈ (Base‘𝑇)) |
18 | ghmid.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
19 | 15, 7, 18 | grpid 19015 | . . . 4 ⊢ ((𝑇 ∈ Grp ∧ (𝐹‘𝑌) ∈ (Base‘𝑇)) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
20 | 14, 17, 19 | syl2anc 583 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
21 | 13, 20 | mpbid 232 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 0 = (𝐹‘𝑌)) |
22 | 21 | eqcomd 2746 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Grpcgrp 18973 GrpHom cghm 19252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-ghm 19253 |
This theorem is referenced by: ghminv 19263 ghmmhm 19266 ghmpreima 19278 f1ghm0to0 19285 kerf1ghm 19287 ghmqusker 19327 lactghmga 19447 nrhmzr 20563 zrinitorngc 20664 imadrhmcl 20820 srng0 20877 islmhm2 21060 zrh0 21547 chrrhm 21569 zndvds0 21592 ip0l 21677 evlslem2 22126 evlslem3 22127 evlslem6 22128 rhmmpl 22408 rhmply1vr1 22412 0mat2pmat 22763 nmolb2d 24760 nmoi 24770 nmoix 24771 nmoleub 24773 nmoleub2lem2 25168 nmhmcn 25172 dchrptlem2 27327 psgnid 33090 dimkerim 33640 lvecendof1f1o 33646 ricdrng1 42483 rhmpsr 42507 |
Copyright terms: Public domain | W3C validator |