Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qeqnumdivden | Structured version Visualization version GIF version |
Description: Recover a rational number from its canonical representation. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
qeqnumdivden | ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2738 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) = (numer‘𝐴)) | |
2 | eqid 2737 | . . . 4 ⊢ (denom‘𝐴) = (denom‘𝐴) | |
3 | 1, 2 | jctir 521 | . . 3 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) = (numer‘𝐴) ∧ (denom‘𝐴) = (denom‘𝐴))) |
4 | qnumcl 16511 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
5 | qdencl 16512 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
6 | qnumdenbi 16515 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ (numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ) → ((((numer‘𝐴) gcd (denom‘𝐴)) = 1 ∧ 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) ↔ ((numer‘𝐴) = (numer‘𝐴) ∧ (denom‘𝐴) = (denom‘𝐴)))) | |
7 | 4, 5, 6 | mpd3an23 1462 | . . 3 ⊢ (𝐴 ∈ ℚ → ((((numer‘𝐴) gcd (denom‘𝐴)) = 1 ∧ 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) ↔ ((numer‘𝐴) = (numer‘𝐴) ∧ (denom‘𝐴) = (denom‘𝐴)))) |
8 | 3, 7 | mpbird 256 | . 2 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴)) = 1 ∧ 𝐴 = ((numer‘𝐴) / (denom‘𝐴)))) |
9 | 8 | simprd 496 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6463 (class class class)co 7313 1c1 10942 / cdiv 11702 ℕcn 12043 ℤcz 12389 ℚcq 12758 gcd cgcd 16270 numercnumer 16504 denomcdenom 16505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-sup 9269 df-inf 9270 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-n0 12304 df-z 12390 df-uz 12653 df-q 12759 df-rp 12801 df-fl 13582 df-mod 13660 df-seq 13792 df-exp 13853 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-dvds 16033 df-gcd 16271 df-numer 16506 df-denom 16507 |
This theorem is referenced by: qmuldeneqnum 16518 numdensq 16525 qden1elz 16528 numdenneg 31239 qqhval2 32038 qqhghm 32044 qqhrhm 32045 qqhnm 32046 qqhre 32076 numdenexp 40547 pellexlem3 40863 |
Copyright terms: Public domain | W3C validator |