Proof of Theorem dochsat
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dochsat.h | . . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) | 
| 2 |  | dochsat.u | . . . . . . . . 9
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 3 |  | dochsat.k | . . . . . . . . 9
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 4 | 1, 2, 3 | dvhlmod 41113 | . . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) | 
| 5 | 4 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑈 ∈ LMod) | 
| 6 |  | dochsat.q | . . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ 𝑆) | 
| 7 | 6 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ∈ 𝑆) | 
| 8 |  | eqid 2736 | . . . . . . . 8
⊢
(0g‘𝑈) = (0g‘𝑈) | 
| 9 |  | dochsat.s | . . . . . . . 8
⊢ 𝑆 = (LSubSp‘𝑈) | 
| 10 | 8, 9 | lss0ss 20948 | . . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝑄 ∈ 𝑆) → {(0g‘𝑈)} ⊆ 𝑄) | 
| 11 | 5, 7, 10 | syl2anc 584 | . . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) →
{(0g‘𝑈)}
⊆ 𝑄) | 
| 12 |  | dochsat.a | . . . . . . . . 9
⊢ 𝐴 = (LSAtoms‘𝑈) | 
| 13 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) | 
| 14 | 8, 12, 5, 13 | lsatn0 39001 | . . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}) | 
| 15 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧ 𝑄 = {(0g‘𝑈)}) → 𝑄 = {(0g‘𝑈)}) | 
| 16 | 15 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧ 𝑄 = {(0g‘𝑈)}) → ( ⊥ ‘𝑄) = ( ⊥
‘{(0g‘𝑈)})) | 
| 17 | 16 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧ 𝑄 = {(0g‘𝑈)}) → ( ⊥ ‘( ⊥
‘𝑄)) = ( ⊥
‘( ⊥
‘{(0g‘𝑈)}))) | 
| 18 |  | dochsat.o | . . . . . . . . . . . . . 14
⊢  ⊥ =
((ocH‘𝐾)‘𝑊) | 
| 19 | 1, 2, 18, 8, 3 | dochoc0 41363 | . . . . . . . . . . . . 13
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘{(0g‘𝑈)})) = {(0g‘𝑈)}) | 
| 20 | 19 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘{(0g‘𝑈)})) = {(0g‘𝑈)}) | 
| 21 | 20 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧ 𝑄 = {(0g‘𝑈)}) → ( ⊥ ‘( ⊥
‘{(0g‘𝑈)})) = {(0g‘𝑈)}) | 
| 22 | 17, 21 | eqtrd 2776 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧ 𝑄 = {(0g‘𝑈)}) → ( ⊥ ‘( ⊥
‘𝑄)) =
{(0g‘𝑈)}) | 
| 23 | 22 | ex 412 | . . . . . . . . 9
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → (𝑄 = {(0g‘𝑈)} → ( ⊥ ‘( ⊥
‘𝑄)) =
{(0g‘𝑈)})) | 
| 24 | 23 | necon3d 2960 | . . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → (( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}
→ 𝑄 ≠
{(0g‘𝑈)})) | 
| 25 | 14, 24 | mpd 15 | . . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ≠ {(0g‘𝑈)}) | 
| 26 | 25 | necomd 2995 | . . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) →
{(0g‘𝑈)}
≠ 𝑄) | 
| 27 |  | df-pss 3970 | . . . . . 6
⊢
({(0g‘𝑈)} ⊊ 𝑄 ↔ ({(0g‘𝑈)} ⊆ 𝑄 ∧ {(0g‘𝑈)} ≠ 𝑄)) | 
| 28 | 11, 26, 27 | sylanbrc 583 | . . . . 5
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) →
{(0g‘𝑈)}
⊊ 𝑄) | 
| 29 | 3 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 30 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Base‘𝑈) =
(Base‘𝑈) | 
| 31 | 30, 9 | lssss 20935 | . . . . . . . . 9
⊢ (𝑄 ∈ 𝑆 → 𝑄 ⊆ (Base‘𝑈)) | 
| 32 | 6, 31 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑄 ⊆ (Base‘𝑈)) | 
| 33 | 32 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ⊆ (Base‘𝑈)) | 
| 34 | 1, 2, 30, 18 | dochocss 41369 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ⊆ (Base‘𝑈)) → 𝑄 ⊆ ( ⊥ ‘( ⊥
‘𝑄))) | 
| 35 | 29, 33, 34 | syl2anc 584 | . . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ⊆ ( ⊥ ‘( ⊥
‘𝑄))) | 
| 36 | 9, 12, 5, 13 | lsatlssel 38999 | . . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝑆) | 
| 37 | 9 | lsssubg 20956 | . . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ ( ⊥
‘( ⊥ ‘𝑄)) ∈ 𝑆) → ( ⊥ ‘( ⊥
‘𝑄)) ∈
(SubGrp‘𝑈)) | 
| 38 | 5, 36, 37 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) ∈
(SubGrp‘𝑈)) | 
| 39 |  | eqid 2736 | . . . . . . . 8
⊢
(LSSum‘𝑈) =
(LSSum‘𝑈) | 
| 40 | 8, 39 | lsm02 19691 | . . . . . . 7
⊢ (( ⊥
‘( ⊥ ‘𝑄)) ∈ (SubGrp‘𝑈) →
({(0g‘𝑈)}
(LSSum‘𝑈)( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘( ⊥
‘𝑄))) | 
| 41 | 38, 40 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) →
({(0g‘𝑈)}
(LSSum‘𝑈)( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘( ⊥
‘𝑄))) | 
| 42 | 35, 41 | sseqtrrd 4020 | . . . . 5
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ⊆ ({(0g‘𝑈)} (LSSum‘𝑈)( ⊥ ‘( ⊥
‘𝑄)))) | 
| 43 | 1, 2, 3 | dvhlvec 41112 | . . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LVec) | 
| 44 | 43 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑈 ∈ LVec) | 
| 45 | 8, 9 | lsssn0 20947 | . . . . . . 7
⊢ (𝑈 ∈ LMod →
{(0g‘𝑈)}
∈ 𝑆) | 
| 46 | 5, 45 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) →
{(0g‘𝑈)}
∈ 𝑆) | 
| 47 | 9, 39, 12, 44, 46, 7, 13 | lsmsatcv 39012 | . . . . 5
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧
{(0g‘𝑈)}
⊊ 𝑄 ∧ 𝑄 ⊆
({(0g‘𝑈)}
(LSSum‘𝑈)( ⊥
‘( ⊥ ‘𝑄)))) → 𝑄 = ({(0g‘𝑈)} (LSSum‘𝑈)( ⊥ ‘( ⊥
‘𝑄)))) | 
| 48 | 28, 42, 47 | mpd3an23 1464 | . . . 4
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 = ({(0g‘𝑈)} (LSSum‘𝑈)( ⊥ ‘( ⊥
‘𝑄)))) | 
| 49 | 48, 41 | eqtr2d 2777 | . . 3
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) = 𝑄) | 
| 50 | 49, 13 | eqeltrrd 2841 | . 2
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ∈ 𝐴) | 
| 51 | 3 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 52 |  | eqid 2736 | . . . . . 6
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | 
| 53 | 1, 2, 52, 12 | dih1dimat 41333 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ ran ((DIsoH‘𝐾)‘𝑊)) | 
| 54 | 3, 53 | sylan 580 | . . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ ran ((DIsoH‘𝐾)‘𝑊)) | 
| 55 | 1, 52, 18 | dochoc 41370 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘𝑄)) = 𝑄) | 
| 56 | 51, 54, 55 | syl2anc 584 | . . 3
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) = 𝑄) | 
| 57 |  | simpr 484 | . . 3
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐴) | 
| 58 | 56, 57 | eqeltrd 2840 | . 2
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) | 
| 59 | 50, 58 | impbida 800 | 1
⊢ (𝜑 → (( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴 ↔ 𝑄 ∈ 𝐴)) |