Proof of Theorem dochsat
| Step | Hyp | Ref
| Expression |
| 1 | | dochsat.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | dochsat.u |
. . . . . . . . 9
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 3 | | dochsat.k |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 4 | 1, 2, 3 | dvhlmod 41134 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 5 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑈 ∈ LMod) |
| 6 | | dochsat.q |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 7 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ∈ 𝑆) |
| 8 | | eqid 2736 |
. . . . . . . 8
⊢
(0g‘𝑈) = (0g‘𝑈) |
| 9 | | dochsat.s |
. . . . . . . 8
⊢ 𝑆 = (LSubSp‘𝑈) |
| 10 | 8, 9 | lss0ss 20911 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝑄 ∈ 𝑆) → {(0g‘𝑈)} ⊆ 𝑄) |
| 11 | 5, 7, 10 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) →
{(0g‘𝑈)}
⊆ 𝑄) |
| 12 | | dochsat.a |
. . . . . . . . 9
⊢ 𝐴 = (LSAtoms‘𝑈) |
| 13 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) |
| 14 | 8, 12, 5, 13 | lsatn0 39022 |
. . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}) |
| 15 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧ 𝑄 = {(0g‘𝑈)}) → 𝑄 = {(0g‘𝑈)}) |
| 16 | 15 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧ 𝑄 = {(0g‘𝑈)}) → ( ⊥ ‘𝑄) = ( ⊥
‘{(0g‘𝑈)})) |
| 17 | 16 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧ 𝑄 = {(0g‘𝑈)}) → ( ⊥ ‘( ⊥
‘𝑄)) = ( ⊥
‘( ⊥
‘{(0g‘𝑈)}))) |
| 18 | | dochsat.o |
. . . . . . . . . . . . . 14
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
| 19 | 1, 2, 18, 8, 3 | dochoc0 41384 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘{(0g‘𝑈)})) = {(0g‘𝑈)}) |
| 20 | 19 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘{(0g‘𝑈)})) = {(0g‘𝑈)}) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧ 𝑄 = {(0g‘𝑈)}) → ( ⊥ ‘( ⊥
‘{(0g‘𝑈)})) = {(0g‘𝑈)}) |
| 22 | 17, 21 | eqtrd 2771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧ 𝑄 = {(0g‘𝑈)}) → ( ⊥ ‘( ⊥
‘𝑄)) =
{(0g‘𝑈)}) |
| 23 | 22 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → (𝑄 = {(0g‘𝑈)} → ( ⊥ ‘( ⊥
‘𝑄)) =
{(0g‘𝑈)})) |
| 24 | 23 | necon3d 2954 |
. . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → (( ⊥ ‘( ⊥
‘𝑄)) ≠
{(0g‘𝑈)}
→ 𝑄 ≠
{(0g‘𝑈)})) |
| 25 | 14, 24 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ≠ {(0g‘𝑈)}) |
| 26 | 25 | necomd 2988 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) →
{(0g‘𝑈)}
≠ 𝑄) |
| 27 | | df-pss 3951 |
. . . . . 6
⊢
({(0g‘𝑈)} ⊊ 𝑄 ↔ ({(0g‘𝑈)} ⊆ 𝑄 ∧ {(0g‘𝑈)} ≠ 𝑄)) |
| 28 | 11, 26, 27 | sylanbrc 583 |
. . . . 5
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) →
{(0g‘𝑈)}
⊊ 𝑄) |
| 29 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 30 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 31 | 30, 9 | lssss 20898 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝑆 → 𝑄 ⊆ (Base‘𝑈)) |
| 32 | 6, 31 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ⊆ (Base‘𝑈)) |
| 33 | 32 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ⊆ (Base‘𝑈)) |
| 34 | 1, 2, 30, 18 | dochocss 41390 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ⊆ (Base‘𝑈)) → 𝑄 ⊆ ( ⊥ ‘( ⊥
‘𝑄))) |
| 35 | 29, 33, 34 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ⊆ ( ⊥ ‘( ⊥
‘𝑄))) |
| 36 | 9, 12, 5, 13 | lsatlssel 39020 |
. . . . . . . 8
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝑆) |
| 37 | 9 | lsssubg 20919 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ ( ⊥
‘( ⊥ ‘𝑄)) ∈ 𝑆) → ( ⊥ ‘( ⊥
‘𝑄)) ∈
(SubGrp‘𝑈)) |
| 38 | 5, 36, 37 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) ∈
(SubGrp‘𝑈)) |
| 39 | | eqid 2736 |
. . . . . . . 8
⊢
(LSSum‘𝑈) =
(LSSum‘𝑈) |
| 40 | 8, 39 | lsm02 19658 |
. . . . . . 7
⊢ (( ⊥
‘( ⊥ ‘𝑄)) ∈ (SubGrp‘𝑈) →
({(0g‘𝑈)}
(LSSum‘𝑈)( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘( ⊥
‘𝑄))) |
| 41 | 38, 40 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) →
({(0g‘𝑈)}
(LSSum‘𝑈)( ⊥
‘( ⊥ ‘𝑄))) = ( ⊥ ‘( ⊥
‘𝑄))) |
| 42 | 35, 41 | sseqtrrd 4001 |
. . . . 5
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ⊆ ({(0g‘𝑈)} (LSSum‘𝑈)( ⊥ ‘( ⊥
‘𝑄)))) |
| 43 | 1, 2, 3 | dvhlvec 41133 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LVec) |
| 44 | 43 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑈 ∈ LVec) |
| 45 | 8, 9 | lsssn0 20910 |
. . . . . . 7
⊢ (𝑈 ∈ LMod →
{(0g‘𝑈)}
∈ 𝑆) |
| 46 | 5, 45 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) →
{(0g‘𝑈)}
∈ 𝑆) |
| 47 | 9, 39, 12, 44, 46, 7, 13 | lsmsatcv 39033 |
. . . . 5
⊢ (((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) ∧
{(0g‘𝑈)}
⊊ 𝑄 ∧ 𝑄 ⊆
({(0g‘𝑈)}
(LSSum‘𝑈)( ⊥
‘( ⊥ ‘𝑄)))) → 𝑄 = ({(0g‘𝑈)} (LSSum‘𝑈)( ⊥ ‘( ⊥
‘𝑄)))) |
| 48 | 28, 42, 47 | mpd3an23 1465 |
. . . 4
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 = ({(0g‘𝑈)} (LSSum‘𝑈)( ⊥ ‘( ⊥
‘𝑄)))) |
| 49 | 48, 41 | eqtr2d 2772 |
. . 3
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) = 𝑄) |
| 50 | 49, 13 | eqeltrrd 2836 |
. 2
⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) → 𝑄 ∈ 𝐴) |
| 51 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 52 | | eqid 2736 |
. . . . . 6
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) |
| 53 | 1, 2, 52, 12 | dih1dimat 41354 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 54 | 3, 53 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 55 | 1, 52, 18 | dochoc 41391 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘𝑄)) = 𝑄) |
| 56 | 51, 54, 55 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) = 𝑄) |
| 57 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐴) |
| 58 | 56, 57 | eqeltrd 2835 |
. 2
⊢ ((𝜑 ∧ 𝑄 ∈ 𝐴) → ( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴) |
| 59 | 50, 58 | impbida 800 |
1
⊢ (𝜑 → (( ⊥ ‘( ⊥
‘𝑄)) ∈ 𝐴 ↔ 𝑄 ∈ 𝐴)) |