Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmimasvsca Structured version   Visualization version   GIF version

Theorem lmhmimasvsca 33023
Description: Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
lmhmimasvsca.w 𝑊 = (𝐹s 𝑉)
lmhmimasvsca.b 𝐵 = (Base‘𝑉)
lmhmimasvsca.c 𝐶 = (Base‘𝑊)
lmhmimasvsca.x (𝜑𝑋𝐾)
lmhmimasvsca.y (𝜑𝑌𝐵)
lmhmimasvsca.1 (𝜑𝐹:𝐵onto𝐶)
lmhmimasvsca.f (𝜑𝐹 ∈ (𝑉 LMHom 𝑊))
lmhmimasvsca.2 · = ( ·𝑠𝑉)
lmhmimasvsca.3 × = ( ·𝑠𝑊)
lmhmimasvsca.k 𝐾 = (Base‘(Scalar‘𝑉))
Assertion
Ref Expression
lmhmimasvsca (𝜑 → (𝑋 × (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))

Proof of Theorem lmhmimasvsca
Dummy variables 𝑎 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmimasvsca.x . 2 (𝜑𝑋𝐾)
2 lmhmimasvsca.y . 2 (𝜑𝑌𝐵)
3 lmhmimasvsca.w . . . 4 𝑊 = (𝐹s 𝑉)
43a1i 11 . . 3 (𝜑𝑊 = (𝐹s 𝑉))
5 lmhmimasvsca.b . . . 4 𝐵 = (Base‘𝑉)
65a1i 11 . . 3 (𝜑𝐵 = (Base‘𝑉))
7 lmhmimasvsca.1 . . 3 (𝜑𝐹:𝐵onto𝐶)
8 lmhmimasvsca.f . . . 4 (𝜑𝐹 ∈ (𝑉 LMHom 𝑊))
9 lmhmlmod1 20972 . . . 4 (𝐹 ∈ (𝑉 LMHom 𝑊) → 𝑉 ∈ LMod)
108, 9syl 17 . . 3 (𝜑𝑉 ∈ LMod)
11 eqid 2729 . . 3 (Scalar‘𝑉) = (Scalar‘𝑉)
12 lmhmimasvsca.k . . 3 𝐾 = (Base‘(Scalar‘𝑉))
13 lmhmimasvsca.2 . . 3 · = ( ·𝑠𝑉)
14 lmhmimasvsca.3 . . 3 × = ( ·𝑠𝑊)
15 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑝𝐾𝑎𝐵𝑞𝐵)) ∧ (𝐹𝑎) = (𝐹𝑞)) → (𝐹𝑎) = (𝐹𝑞))
1615oveq2d 7385 . . . . 5 (((𝜑 ∧ (𝑝𝐾𝑎𝐵𝑞𝐵)) ∧ (𝐹𝑎) = (𝐹𝑞)) → (𝑝 × (𝐹𝑎)) = (𝑝 × (𝐹𝑞)))
178ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑝𝐾𝑎𝐵𝑞𝐵)) ∧ (𝐹𝑎) = (𝐹𝑞)) → 𝐹 ∈ (𝑉 LMHom 𝑊))
18 simplr1 1216 . . . . . 6 (((𝜑 ∧ (𝑝𝐾𝑎𝐵𝑞𝐵)) ∧ (𝐹𝑎) = (𝐹𝑞)) → 𝑝𝐾)
19 simplr2 1217 . . . . . 6 (((𝜑 ∧ (𝑝𝐾𝑎𝐵𝑞𝐵)) ∧ (𝐹𝑎) = (𝐹𝑞)) → 𝑎𝐵)
2011, 12, 5, 13, 14lmhmlin 20974 . . . . . 6 ((𝐹 ∈ (𝑉 LMHom 𝑊) ∧ 𝑝𝐾𝑎𝐵) → (𝐹‘(𝑝 · 𝑎)) = (𝑝 × (𝐹𝑎)))
2117, 18, 19, 20syl3anc 1373 . . . . 5 (((𝜑 ∧ (𝑝𝐾𝑎𝐵𝑞𝐵)) ∧ (𝐹𝑎) = (𝐹𝑞)) → (𝐹‘(𝑝 · 𝑎)) = (𝑝 × (𝐹𝑎)))
22 simplr3 1218 . . . . . 6 (((𝜑 ∧ (𝑝𝐾𝑎𝐵𝑞𝐵)) ∧ (𝐹𝑎) = (𝐹𝑞)) → 𝑞𝐵)
2311, 12, 5, 13, 14lmhmlin 20974 . . . . . 6 ((𝐹 ∈ (𝑉 LMHom 𝑊) ∧ 𝑝𝐾𝑞𝐵) → (𝐹‘(𝑝 · 𝑞)) = (𝑝 × (𝐹𝑞)))
2417, 18, 22, 23syl3anc 1373 . . . . 5 (((𝜑 ∧ (𝑝𝐾𝑎𝐵𝑞𝐵)) ∧ (𝐹𝑎) = (𝐹𝑞)) → (𝐹‘(𝑝 · 𝑞)) = (𝑝 × (𝐹𝑞)))
2516, 21, 243eqtr4d 2774 . . . 4 (((𝜑 ∧ (𝑝𝐾𝑎𝐵𝑞𝐵)) ∧ (𝐹𝑎) = (𝐹𝑞)) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))
2625ex 412 . . 3 ((𝜑 ∧ (𝑝𝐾𝑎𝐵𝑞𝐵)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
274, 6, 7, 10, 11, 12, 13, 14, 26imasvscaval 17477 . 2 ((𝜑𝑋𝐾𝑌𝐵) → (𝑋 × (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
281, 2, 27mpd3an23 1465 1 (𝜑 → (𝑋 × (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ontowfo 6497  cfv 6499  (class class class)co 7369  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  s cimas 17443  LModclmod 20798   LMHom clmhm 20958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-imas 17447  df-lmhm 20961
This theorem is referenced by:  algextdeglem8  33707
  Copyright terms: Public domain W3C validator