| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmhmimasvsca | Structured version Visualization version GIF version | ||
| Description: Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| lmhmimasvsca.w | ⊢ 𝑊 = (𝐹 “s 𝑉) |
| lmhmimasvsca.b | ⊢ 𝐵 = (Base‘𝑉) |
| lmhmimasvsca.c | ⊢ 𝐶 = (Base‘𝑊) |
| lmhmimasvsca.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| lmhmimasvsca.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lmhmimasvsca.1 | ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) |
| lmhmimasvsca.f | ⊢ (𝜑 → 𝐹 ∈ (𝑉 LMHom 𝑊)) |
| lmhmimasvsca.2 | ⊢ · = ( ·𝑠 ‘𝑉) |
| lmhmimasvsca.3 | ⊢ × = ( ·𝑠 ‘𝑊) |
| lmhmimasvsca.k | ⊢ 𝐾 = (Base‘(Scalar‘𝑉)) |
| Ref | Expression |
|---|---|
| lmhmimasvsca | ⊢ (𝜑 → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmimasvsca.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 2 | lmhmimasvsca.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | lmhmimasvsca.w | . . . 4 ⊢ 𝑊 = (𝐹 “s 𝑉) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑊 = (𝐹 “s 𝑉)) |
| 5 | lmhmimasvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝑉) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) |
| 7 | lmhmimasvsca.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) | |
| 8 | lmhmimasvsca.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑉 LMHom 𝑊)) | |
| 9 | lmhmlmod1 20940 | . . . 4 ⊢ (𝐹 ∈ (𝑉 LMHom 𝑊) → 𝑉 ∈ LMod) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑉 ∈ LMod) |
| 11 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 12 | lmhmimasvsca.k | . . 3 ⊢ 𝐾 = (Base‘(Scalar‘𝑉)) | |
| 13 | lmhmimasvsca.2 | . . 3 ⊢ · = ( ·𝑠 ‘𝑉) | |
| 14 | lmhmimasvsca.3 | . . 3 ⊢ × = ( ·𝑠 ‘𝑊) | |
| 15 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘𝑎) = (𝐹‘𝑞)) | |
| 16 | 15 | oveq2d 7403 | . . . . 5 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝑝 × (𝐹‘𝑎)) = (𝑝 × (𝐹‘𝑞))) |
| 17 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝐹 ∈ (𝑉 LMHom 𝑊)) |
| 18 | simplr1 1216 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝑝 ∈ 𝐾) | |
| 19 | simplr2 1217 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝑎 ∈ 𝐵) | |
| 20 | 11, 12, 5, 13, 14 | lmhmlin 20942 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 LMHom 𝑊) ∧ 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵) → (𝐹‘(𝑝 · 𝑎)) = (𝑝 × (𝐹‘𝑎))) |
| 21 | 17, 18, 19, 20 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘(𝑝 · 𝑎)) = (𝑝 × (𝐹‘𝑎))) |
| 22 | simplr3 1218 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝑞 ∈ 𝐵) | |
| 23 | 11, 12, 5, 13, 14 | lmhmlin 20942 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 LMHom 𝑊) ∧ 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝐵) → (𝐹‘(𝑝 · 𝑞)) = (𝑝 × (𝐹‘𝑞))) |
| 24 | 17, 18, 22, 23 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘(𝑝 · 𝑞)) = (𝑝 × (𝐹‘𝑞))) |
| 25 | 16, 21, 24 | 3eqtr4d 2774 | . . . 4 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))) |
| 26 | 25 | ex 412 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) |
| 27 | 4, 6, 7, 10, 11, 12, 13, 14, 26 | imasvscaval 17501 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
| 28 | 1, 2, 27 | mpd3an23 1465 | 1 ⊢ (𝜑 → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 “s cimas 17467 LModclmod 20766 LMHom clmhm 20926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-imas 17471 df-lmhm 20929 |
| This theorem is referenced by: algextdeglem8 33714 |
| Copyright terms: Public domain | W3C validator |