![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmhmimasvsca | Structured version Visualization version GIF version |
Description: Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
lmhmimasvsca.w | β’ π = (πΉ βs π) |
lmhmimasvsca.b | β’ π΅ = (Baseβπ) |
lmhmimasvsca.c | β’ πΆ = (Baseβπ) |
lmhmimasvsca.x | β’ (π β π β πΎ) |
lmhmimasvsca.y | β’ (π β π β π΅) |
lmhmimasvsca.1 | β’ (π β πΉ:π΅βontoβπΆ) |
lmhmimasvsca.f | β’ (π β πΉ β (π LMHom π)) |
lmhmimasvsca.2 | β’ Β· = ( Β·π βπ) |
lmhmimasvsca.3 | β’ Γ = ( Β·π βπ) |
lmhmimasvsca.k | β’ πΎ = (Baseβ(Scalarβπ)) |
Ref | Expression |
---|---|
lmhmimasvsca | β’ (π β (π Γ (πΉβπ)) = (πΉβ(π Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmimasvsca.x | . 2 β’ (π β π β πΎ) | |
2 | lmhmimasvsca.y | . 2 β’ (π β π β π΅) | |
3 | lmhmimasvsca.w | . . . 4 β’ π = (πΉ βs π) | |
4 | 3 | a1i 11 | . . 3 β’ (π β π = (πΉ βs π)) |
5 | lmhmimasvsca.b | . . . 4 β’ π΅ = (Baseβπ) | |
6 | 5 | a1i 11 | . . 3 β’ (π β π΅ = (Baseβπ)) |
7 | lmhmimasvsca.1 | . . 3 β’ (π β πΉ:π΅βontoβπΆ) | |
8 | lmhmimasvsca.f | . . . 4 β’ (π β πΉ β (π LMHom π)) | |
9 | lmhmlmod1 20788 | . . . 4 β’ (πΉ β (π LMHom π) β π β LMod) | |
10 | 8, 9 | syl 17 | . . 3 β’ (π β π β LMod) |
11 | eqid 2730 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
12 | lmhmimasvsca.k | . . 3 β’ πΎ = (Baseβ(Scalarβπ)) | |
13 | lmhmimasvsca.2 | . . 3 β’ Β· = ( Β·π βπ) | |
14 | lmhmimasvsca.3 | . . 3 β’ Γ = ( Β·π βπ) | |
15 | simpr 483 | . . . . . 6 β’ (((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β§ (πΉβπ) = (πΉβπ)) β (πΉβπ) = (πΉβπ)) | |
16 | 15 | oveq2d 7427 | . . . . 5 β’ (((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β§ (πΉβπ) = (πΉβπ)) β (π Γ (πΉβπ)) = (π Γ (πΉβπ))) |
17 | 8 | ad2antrr 722 | . . . . . 6 β’ (((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β§ (πΉβπ) = (πΉβπ)) β πΉ β (π LMHom π)) |
18 | simplr1 1213 | . . . . . 6 β’ (((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β§ (πΉβπ) = (πΉβπ)) β π β πΎ) | |
19 | simplr2 1214 | . . . . . 6 β’ (((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β§ (πΉβπ) = (πΉβπ)) β π β π΅) | |
20 | 11, 12, 5, 13, 14 | lmhmlin 20790 | . . . . . 6 β’ ((πΉ β (π LMHom π) β§ π β πΎ β§ π β π΅) β (πΉβ(π Β· π)) = (π Γ (πΉβπ))) |
21 | 17, 18, 19, 20 | syl3anc 1369 | . . . . 5 β’ (((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π Β· π)) = (π Γ (πΉβπ))) |
22 | simplr3 1215 | . . . . . 6 β’ (((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β§ (πΉβπ) = (πΉβπ)) β π β π΅) | |
23 | 11, 12, 5, 13, 14 | lmhmlin 20790 | . . . . . 6 β’ ((πΉ β (π LMHom π) β§ π β πΎ β§ π β π΅) β (πΉβ(π Β· π)) = (π Γ (πΉβπ))) |
24 | 17, 18, 22, 23 | syl3anc 1369 | . . . . 5 β’ (((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π Β· π)) = (π Γ (πΉβπ))) |
25 | 16, 21, 24 | 3eqtr4d 2780 | . . . 4 β’ (((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π Β· π)) = (πΉβ(π Β· π))) |
26 | 25 | ex 411 | . . 3 β’ ((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β ((πΉβπ) = (πΉβπ) β (πΉβ(π Β· π)) = (πΉβ(π Β· π)))) |
27 | 4, 6, 7, 10, 11, 12, 13, 14, 26 | imasvscaval 17488 | . 2 β’ ((π β§ π β πΎ β§ π β π΅) β (π Γ (πΉβπ)) = (πΉβ(π Β· π))) |
28 | 1, 2, 27 | mpd3an23 1461 | 1 β’ (π β (π Γ (πΉβπ)) = (πΉβ(π Β· π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βontoβwfo 6540 βcfv 6542 (class class class)co 7411 Basecbs 17148 Scalarcsca 17204 Β·π cvsca 17205 βs cimas 17454 LModclmod 20614 LMHom clmhm 20774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-imas 17458 df-lmhm 20777 |
This theorem is referenced by: algextdeglem8 33069 |
Copyright terms: Public domain | W3C validator |