| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmhmimasvsca | Structured version Visualization version GIF version | ||
| Description: Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| lmhmimasvsca.w | ⊢ 𝑊 = (𝐹 “s 𝑉) |
| lmhmimasvsca.b | ⊢ 𝐵 = (Base‘𝑉) |
| lmhmimasvsca.c | ⊢ 𝐶 = (Base‘𝑊) |
| lmhmimasvsca.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| lmhmimasvsca.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| lmhmimasvsca.1 | ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) |
| lmhmimasvsca.f | ⊢ (𝜑 → 𝐹 ∈ (𝑉 LMHom 𝑊)) |
| lmhmimasvsca.2 | ⊢ · = ( ·𝑠 ‘𝑉) |
| lmhmimasvsca.3 | ⊢ × = ( ·𝑠 ‘𝑊) |
| lmhmimasvsca.k | ⊢ 𝐾 = (Base‘(Scalar‘𝑉)) |
| Ref | Expression |
|---|---|
| lmhmimasvsca | ⊢ (𝜑 → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmimasvsca.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 2 | lmhmimasvsca.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | lmhmimasvsca.w | . . . 4 ⊢ 𝑊 = (𝐹 “s 𝑉) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑊 = (𝐹 “s 𝑉)) |
| 5 | lmhmimasvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝑉) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) |
| 7 | lmhmimasvsca.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) | |
| 8 | lmhmimasvsca.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑉 LMHom 𝑊)) | |
| 9 | lmhmlmod1 20999 | . . . 4 ⊢ (𝐹 ∈ (𝑉 LMHom 𝑊) → 𝑉 ∈ LMod) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑉 ∈ LMod) |
| 11 | eqid 2734 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 12 | lmhmimasvsca.k | . . 3 ⊢ 𝐾 = (Base‘(Scalar‘𝑉)) | |
| 13 | lmhmimasvsca.2 | . . 3 ⊢ · = ( ·𝑠 ‘𝑉) | |
| 14 | lmhmimasvsca.3 | . . 3 ⊢ × = ( ·𝑠 ‘𝑊) | |
| 15 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘𝑎) = (𝐹‘𝑞)) | |
| 16 | 15 | oveq2d 7428 | . . . . 5 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝑝 × (𝐹‘𝑎)) = (𝑝 × (𝐹‘𝑞))) |
| 17 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝐹 ∈ (𝑉 LMHom 𝑊)) |
| 18 | simplr1 1215 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝑝 ∈ 𝐾) | |
| 19 | simplr2 1216 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝑎 ∈ 𝐵) | |
| 20 | 11, 12, 5, 13, 14 | lmhmlin 21001 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 LMHom 𝑊) ∧ 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵) → (𝐹‘(𝑝 · 𝑎)) = (𝑝 × (𝐹‘𝑎))) |
| 21 | 17, 18, 19, 20 | syl3anc 1372 | . . . . 5 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘(𝑝 · 𝑎)) = (𝑝 × (𝐹‘𝑎))) |
| 22 | simplr3 1217 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝑞 ∈ 𝐵) | |
| 23 | 11, 12, 5, 13, 14 | lmhmlin 21001 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 LMHom 𝑊) ∧ 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝐵) → (𝐹‘(𝑝 · 𝑞)) = (𝑝 × (𝐹‘𝑞))) |
| 24 | 17, 18, 22, 23 | syl3anc 1372 | . . . . 5 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘(𝑝 · 𝑞)) = (𝑝 × (𝐹‘𝑞))) |
| 25 | 16, 21, 24 | 3eqtr4d 2779 | . . . 4 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))) |
| 26 | 25 | ex 412 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) |
| 27 | 4, 6, 7, 10, 11, 12, 13, 14, 26 | imasvscaval 17553 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
| 28 | 1, 2, 27 | mpd3an23 1464 | 1 ⊢ (𝜑 → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 –onto→wfo 6538 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 Scalarcsca 17275 ·𝑠 cvsca 17276 “s cimas 17519 LModclmod 20825 LMHom clmhm 20985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-fz 13529 df-struct 17165 df-slot 17200 df-ndx 17212 df-base 17229 df-plusg 17285 df-mulr 17286 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ds 17294 df-imas 17523 df-lmhm 20988 |
| This theorem is referenced by: algextdeglem8 33695 |
| Copyright terms: Public domain | W3C validator |