![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmhmimasvsca | Structured version Visualization version GIF version |
Description: Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
lmhmimasvsca.w | ⊢ 𝑊 = (𝐹 “s 𝑉) |
lmhmimasvsca.b | ⊢ 𝐵 = (Base‘𝑉) |
lmhmimasvsca.c | ⊢ 𝐶 = (Base‘𝑊) |
lmhmimasvsca.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
lmhmimasvsca.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lmhmimasvsca.1 | ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) |
lmhmimasvsca.f | ⊢ (𝜑 → 𝐹 ∈ (𝑉 LMHom 𝑊)) |
lmhmimasvsca.2 | ⊢ · = ( ·𝑠 ‘𝑉) |
lmhmimasvsca.3 | ⊢ × = ( ·𝑠 ‘𝑊) |
lmhmimasvsca.k | ⊢ 𝐾 = (Base‘(Scalar‘𝑉)) |
Ref | Expression |
---|---|
lmhmimasvsca | ⊢ (𝜑 → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmimasvsca.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
2 | lmhmimasvsca.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | lmhmimasvsca.w | . . . 4 ⊢ 𝑊 = (𝐹 “s 𝑉) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑊 = (𝐹 “s 𝑉)) |
5 | lmhmimasvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝑉) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) |
7 | lmhmimasvsca.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) | |
8 | lmhmimasvsca.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑉 LMHom 𝑊)) | |
9 | lmhmlmod1 21059 | . . . 4 ⊢ (𝐹 ∈ (𝑉 LMHom 𝑊) → 𝑉 ∈ LMod) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑉 ∈ LMod) |
11 | eqid 2737 | . . 3 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
12 | lmhmimasvsca.k | . . 3 ⊢ 𝐾 = (Base‘(Scalar‘𝑉)) | |
13 | lmhmimasvsca.2 | . . 3 ⊢ · = ( ·𝑠 ‘𝑉) | |
14 | lmhmimasvsca.3 | . . 3 ⊢ × = ( ·𝑠 ‘𝑊) | |
15 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘𝑎) = (𝐹‘𝑞)) | |
16 | 15 | oveq2d 7454 | . . . . 5 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝑝 × (𝐹‘𝑎)) = (𝑝 × (𝐹‘𝑞))) |
17 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝐹 ∈ (𝑉 LMHom 𝑊)) |
18 | simplr1 1216 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝑝 ∈ 𝐾) | |
19 | simplr2 1217 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝑎 ∈ 𝐵) | |
20 | 11, 12, 5, 13, 14 | lmhmlin 21061 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 LMHom 𝑊) ∧ 𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵) → (𝐹‘(𝑝 · 𝑎)) = (𝑝 × (𝐹‘𝑎))) |
21 | 17, 18, 19, 20 | syl3anc 1372 | . . . . 5 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘(𝑝 · 𝑎)) = (𝑝 × (𝐹‘𝑎))) |
22 | simplr3 1218 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → 𝑞 ∈ 𝐵) | |
23 | 11, 12, 5, 13, 14 | lmhmlin 21061 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑉 LMHom 𝑊) ∧ 𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝐵) → (𝐹‘(𝑝 · 𝑞)) = (𝑝 × (𝐹‘𝑞))) |
24 | 17, 18, 22, 23 | syl3anc 1372 | . . . . 5 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘(𝑝 · 𝑞)) = (𝑝 × (𝐹‘𝑞))) |
25 | 16, 21, 24 | 3eqtr4d 2787 | . . . 4 ⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) ∧ (𝐹‘𝑎) = (𝐹‘𝑞)) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))) |
26 | 25 | ex 412 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) |
27 | 4, 6, 7, 10, 11, 12, 13, 14, 26 | imasvscaval 17594 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
28 | 1, 2, 27 | mpd3an23 1464 | 1 ⊢ (𝜑 → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 –onto→wfo 6567 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 Scalarcsca 17310 ·𝑠 cvsca 17311 “s cimas 17560 LModclmod 20884 LMHom clmhm 21045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-inf 9490 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-struct 17190 df-slot 17225 df-ndx 17237 df-base 17255 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-imas 17564 df-lmhm 21048 |
This theorem is referenced by: algextdeglem8 33762 |
Copyright terms: Public domain | W3C validator |