![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincval0 | Structured version Visualization version GIF version |
Description: The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.) |
Ref | Expression |
---|---|
lincval0 | ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (0g‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5316 | . . . . 5 ⊢ ∅ ∈ V | |
2 | 1 | snid 4670 | . . . 4 ⊢ ∅ ∈ {∅} |
3 | fvex 6927 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑀)) ∈ V | |
4 | map0e 8930 | . . . . . 6 ⊢ ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o) | |
5 | 3, 4 | mp1i 13 | . . . . 5 ⊢ (𝑀 ∈ 𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o) |
6 | df1o2 8521 | . . . . 5 ⊢ 1o = {∅} | |
7 | 5, 6 | eqtrdi 2793 | . . . 4 ⊢ (𝑀 ∈ 𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅}) |
8 | 2, 7 | eleqtrrid 2848 | . . 3 ⊢ (𝑀 ∈ 𝑋 → ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)) |
9 | 0elpw 5365 | . . . 4 ⊢ ∅ ∈ 𝒫 (Base‘𝑀) | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑀 ∈ 𝑋 → ∅ ∈ 𝒫 (Base‘𝑀)) |
11 | lincval 48293 | . . 3 ⊢ ((𝑀 ∈ 𝑋 ∧ ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅) ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
12 | 8, 10, 11 | mpd3an23 1464 | . 2 ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
13 | mpt0 6718 | . . . . 5 ⊢ (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)) = ∅ | |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ 𝑋 → (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)) = ∅) |
15 | 14 | oveq2d 7454 | . . 3 ⊢ (𝑀 ∈ 𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (𝑀 Σg ∅)) |
16 | eqid 2737 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
17 | 16 | gsum0 18719 | . . 3 ⊢ (𝑀 Σg ∅) = (0g‘𝑀) |
18 | 15, 17 | eqtrdi 2793 | . 2 ⊢ (𝑀 ∈ 𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (0g‘𝑀)) |
19 | 12, 18 | eqtrd 2777 | 1 ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (0g‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∅c0 4342 𝒫 cpw 4608 {csn 4634 ↦ cmpt 5234 ‘cfv 6569 (class class class)co 7438 1oc1o 8507 ↑m cmap 8874 Basecbs 17254 Scalarcsca 17310 ·𝑠 cvsca 17311 0gc0g 17495 Σg cgsu 17496 linC clinc 48288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-map 8876 df-seq 14049 df-gsum 17498 df-linc 48290 |
This theorem is referenced by: lco0 48311 |
Copyright terms: Public domain | W3C validator |