Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincval0 Structured version   Visualization version   GIF version

Theorem lincval0 45644
Description: The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
lincval0 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (0g𝑀))

Proof of Theorem lincval0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 0ex 5226 . . . . 5 ∅ ∈ V
21snid 4594 . . . 4 ∅ ∈ {∅}
3 fvex 6769 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
4 map0e 8628 . . . . . 6 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
53, 4mp1i 13 . . . . 5 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
6 df1o2 8279 . . . . 5 1o = {∅}
75, 6eqtrdi 2795 . . . 4 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
82, 7eleqtrrid 2846 . . 3 (𝑀𝑋 → ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅))
9 0elpw 5273 . . . 4 ∅ ∈ 𝒫 (Base‘𝑀)
109a1i 11 . . 3 (𝑀𝑋 → ∅ ∈ 𝒫 (Base‘𝑀))
11 lincval 45638 . . 3 ((𝑀𝑋 ∧ ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅) ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))))
128, 10, 11mpd3an23 1461 . 2 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))))
13 mpt0 6559 . . . . 5 (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣)) = ∅
1413a1i 11 . . . 4 (𝑀𝑋 → (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣)) = ∅)
1514oveq2d 7271 . . 3 (𝑀𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg ∅))
16 eqid 2738 . . . 4 (0g𝑀) = (0g𝑀)
1716gsum0 18283 . . 3 (𝑀 Σg ∅) = (0g𝑀)
1815, 17eqtrdi 2795 . 2 (𝑀𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))) = (0g𝑀))
1912, 18eqtrd 2778 1 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  𝒫 cpw 4530  {csn 4558  cmpt 5153  cfv 6418  (class class class)co 7255  1oc1o 8260  m cmap 8573  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068   linC clinc 45633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-map 8575  df-seq 13650  df-gsum 17070  df-linc 45635
This theorem is referenced by:  lco0  45656
  Copyright terms: Public domain W3C validator