| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincval0 | Structured version Visualization version GIF version | ||
| Description: The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.) |
| Ref | Expression |
|---|---|
| lincval0 | ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (0g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5262 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4626 | . . . 4 ⊢ ∅ ∈ {∅} |
| 3 | fvex 6871 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑀)) ∈ V | |
| 4 | map0e 8855 | . . . . . 6 ⊢ ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o) | |
| 5 | 3, 4 | mp1i 13 | . . . . 5 ⊢ (𝑀 ∈ 𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o) |
| 6 | df1o2 8441 | . . . . 5 ⊢ 1o = {∅} | |
| 7 | 5, 6 | eqtrdi 2780 | . . . 4 ⊢ (𝑀 ∈ 𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅}) |
| 8 | 2, 7 | eleqtrrid 2835 | . . 3 ⊢ (𝑀 ∈ 𝑋 → ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)) |
| 9 | 0elpw 5311 | . . . 4 ⊢ ∅ ∈ 𝒫 (Base‘𝑀) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑀 ∈ 𝑋 → ∅ ∈ 𝒫 (Base‘𝑀)) |
| 11 | lincval 48398 | . . 3 ⊢ ((𝑀 ∈ 𝑋 ∧ ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅) ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
| 12 | 8, 10, 11 | mpd3an23 1465 | . 2 ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
| 13 | mpt0 6660 | . . . . 5 ⊢ (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)) = ∅ | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ 𝑋 → (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)) = ∅) |
| 15 | 14 | oveq2d 7403 | . . 3 ⊢ (𝑀 ∈ 𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (𝑀 Σg ∅)) |
| 16 | eqid 2729 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 17 | 16 | gsum0 18611 | . . 3 ⊢ (𝑀 Σg ∅) = (0g‘𝑀) |
| 18 | 15, 17 | eqtrdi 2780 | . 2 ⊢ (𝑀 ∈ 𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (0g‘𝑀)) |
| 19 | 12, 18 | eqtrd 2764 | 1 ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (0g‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 𝒫 cpw 4563 {csn 4589 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 1oc1o 8427 ↑m cmap 8799 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 Σg cgsu 17403 linC clinc 48393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-map 8801 df-seq 13967 df-gsum 17405 df-linc 48395 |
| This theorem is referenced by: lco0 48416 |
| Copyright terms: Public domain | W3C validator |