![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincval0 | Structured version Visualization version GIF version |
Description: The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.) |
Ref | Expression |
---|---|
lincval0 | β’ (π β π β (β ( linC βπ)β ) = (0gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5307 | . . . . 5 β’ β β V | |
2 | 1 | snid 4664 | . . . 4 β’ β β {β } |
3 | fvex 6904 | . . . . . 6 β’ (Baseβ(Scalarβπ)) β V | |
4 | map0e 8878 | . . . . . 6 β’ ((Baseβ(Scalarβπ)) β V β ((Baseβ(Scalarβπ)) βm β ) = 1o) | |
5 | 3, 4 | mp1i 13 | . . . . 5 β’ (π β π β ((Baseβ(Scalarβπ)) βm β ) = 1o) |
6 | df1o2 8475 | . . . . 5 β’ 1o = {β } | |
7 | 5, 6 | eqtrdi 2788 | . . . 4 β’ (π β π β ((Baseβ(Scalarβπ)) βm β ) = {β }) |
8 | 2, 7 | eleqtrrid 2840 | . . 3 β’ (π β π β β β ((Baseβ(Scalarβπ)) βm β )) |
9 | 0elpw 5354 | . . . 4 β’ β β π« (Baseβπ) | |
10 | 9 | a1i 11 | . . 3 β’ (π β π β β β π« (Baseβπ)) |
11 | lincval 47178 | . . 3 β’ ((π β π β§ β β ((Baseβ(Scalarβπ)) βm β ) β§ β β π« (Baseβπ)) β (β ( linC βπ)β ) = (π Ξ£g (π£ β β β¦ ((β βπ£)( Β·π βπ)π£)))) | |
12 | 8, 10, 11 | mpd3an23 1463 | . 2 β’ (π β π β (β ( linC βπ)β ) = (π Ξ£g (π£ β β β¦ ((β βπ£)( Β·π βπ)π£)))) |
13 | mpt0 6692 | . . . . 5 β’ (π£ β β β¦ ((β βπ£)( Β·π βπ)π£)) = β | |
14 | 13 | a1i 11 | . . . 4 β’ (π β π β (π£ β β β¦ ((β βπ£)( Β·π βπ)π£)) = β ) |
15 | 14 | oveq2d 7427 | . . 3 β’ (π β π β (π Ξ£g (π£ β β β¦ ((β βπ£)( Β·π βπ)π£))) = (π Ξ£g β )) |
16 | eqid 2732 | . . . 4 β’ (0gβπ) = (0gβπ) | |
17 | 16 | gsum0 18609 | . . 3 β’ (π Ξ£g β ) = (0gβπ) |
18 | 15, 17 | eqtrdi 2788 | . 2 β’ (π β π β (π Ξ£g (π£ β β β¦ ((β βπ£)( Β·π βπ)π£))) = (0gβπ)) |
19 | 12, 18 | eqtrd 2772 | 1 β’ (π β π β (β ( linC βπ)β ) = (0gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β c0 4322 π« cpw 4602 {csn 4628 β¦ cmpt 5231 βcfv 6543 (class class class)co 7411 1oc1o 8461 βm cmap 8822 Basecbs 17148 Scalarcsca 17204 Β·π cvsca 17205 0gc0g 17389 Ξ£g cgsu 17390 linC clinc 47173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-map 8824 df-seq 13971 df-gsum 17392 df-linc 47175 |
This theorem is referenced by: lco0 47196 |
Copyright terms: Public domain | W3C validator |