Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincval0 Structured version   Visualization version   GIF version

Theorem lincval0 48146
Description: The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
lincval0 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (0g𝑀))

Proof of Theorem lincval0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 0ex 5325 . . . . 5 ∅ ∈ V
21snid 4684 . . . 4 ∅ ∈ {∅}
3 fvex 6935 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
4 map0e 8942 . . . . . 6 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
53, 4mp1i 13 . . . . 5 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
6 df1o2 8531 . . . . 5 1o = {∅}
75, 6eqtrdi 2796 . . . 4 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
82, 7eleqtrrid 2851 . . 3 (𝑀𝑋 → ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅))
9 0elpw 5374 . . . 4 ∅ ∈ 𝒫 (Base‘𝑀)
109a1i 11 . . 3 (𝑀𝑋 → ∅ ∈ 𝒫 (Base‘𝑀))
11 lincval 48140 . . 3 ((𝑀𝑋 ∧ ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅) ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))))
128, 10, 11mpd3an23 1463 . 2 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))))
13 mpt0 6724 . . . . 5 (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣)) = ∅
1413a1i 11 . . . 4 (𝑀𝑋 → (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣)) = ∅)
1514oveq2d 7466 . . 3 (𝑀𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg ∅))
16 eqid 2740 . . . 4 (0g𝑀) = (0g𝑀)
1716gsum0 18724 . . 3 (𝑀 Σg ∅) = (0g𝑀)
1815, 17eqtrdi 2796 . 2 (𝑀𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))) = (0g𝑀))
1912, 18eqtrd 2780 1 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  𝒫 cpw 4622  {csn 4648  cmpt 5249  cfv 6575  (class class class)co 7450  1oc1o 8517  m cmap 8886  Basecbs 17260  Scalarcsca 17316   ·𝑠 cvsca 17317  0gc0g 17501   Σg cgsu 17502   linC clinc 48135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-map 8888  df-seq 14055  df-gsum 17504  df-linc 48137
This theorem is referenced by:  lco0  48158
  Copyright terms: Public domain W3C validator