Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincval0 Structured version   Visualization version   GIF version

Theorem lincval0 45756
Description: The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
lincval0 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (0g𝑀))

Proof of Theorem lincval0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 0ex 5231 . . . . 5 ∅ ∈ V
21snid 4597 . . . 4 ∅ ∈ {∅}
3 fvex 6787 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
4 map0e 8670 . . . . . 6 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
53, 4mp1i 13 . . . . 5 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
6 df1o2 8304 . . . . 5 1o = {∅}
75, 6eqtrdi 2794 . . . 4 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
82, 7eleqtrrid 2846 . . 3 (𝑀𝑋 → ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅))
9 0elpw 5278 . . . 4 ∅ ∈ 𝒫 (Base‘𝑀)
109a1i 11 . . 3 (𝑀𝑋 → ∅ ∈ 𝒫 (Base‘𝑀))
11 lincval 45750 . . 3 ((𝑀𝑋 ∧ ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅) ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))))
128, 10, 11mpd3an23 1462 . 2 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))))
13 mpt0 6575 . . . . 5 (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣)) = ∅
1413a1i 11 . . . 4 (𝑀𝑋 → (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣)) = ∅)
1514oveq2d 7291 . . 3 (𝑀𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg ∅))
16 eqid 2738 . . . 4 (0g𝑀) = (0g𝑀)
1716gsum0 18368 . . 3 (𝑀 Σg ∅) = (0g𝑀)
1815, 17eqtrdi 2794 . 2 (𝑀𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))) = (0g𝑀))
1912, 18eqtrd 2778 1 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  𝒫 cpw 4533  {csn 4561  cmpt 5157  cfv 6433  (class class class)co 7275  1oc1o 8290  m cmap 8615  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151   linC clinc 45745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-map 8617  df-seq 13722  df-gsum 17153  df-linc 45747
This theorem is referenced by:  lco0  45768
  Copyright terms: Public domain W3C validator