| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincval0 | Structured version Visualization version GIF version | ||
| Description: The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.) |
| Ref | Expression |
|---|---|
| lincval0 | ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (0g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5240 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4610 | . . . 4 ⊢ ∅ ∈ {∅} |
| 3 | fvex 6830 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑀)) ∈ V | |
| 4 | map0e 8801 | . . . . . 6 ⊢ ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o) | |
| 5 | 3, 4 | mp1i 13 | . . . . 5 ⊢ (𝑀 ∈ 𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o) |
| 6 | df1o2 8387 | . . . . 5 ⊢ 1o = {∅} | |
| 7 | 5, 6 | eqtrdi 2782 | . . . 4 ⊢ (𝑀 ∈ 𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅}) |
| 8 | 2, 7 | eleqtrrid 2838 | . . 3 ⊢ (𝑀 ∈ 𝑋 → ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)) |
| 9 | 0elpw 5289 | . . . 4 ⊢ ∅ ∈ 𝒫 (Base‘𝑀) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑀 ∈ 𝑋 → ∅ ∈ 𝒫 (Base‘𝑀)) |
| 11 | lincval 48441 | . . 3 ⊢ ((𝑀 ∈ 𝑋 ∧ ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅) ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
| 12 | 8, 10, 11 | mpd3an23 1465 | . 2 ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
| 13 | mpt0 6618 | . . . . 5 ⊢ (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)) = ∅ | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ 𝑋 → (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)) = ∅) |
| 15 | 14 | oveq2d 7357 | . . 3 ⊢ (𝑀 ∈ 𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (𝑀 Σg ∅)) |
| 16 | eqid 2731 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 17 | 16 | gsum0 18587 | . . 3 ⊢ (𝑀 Σg ∅) = (0g‘𝑀) |
| 18 | 15, 17 | eqtrdi 2782 | . 2 ⊢ (𝑀 ∈ 𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (0g‘𝑀)) |
| 19 | 12, 18 | eqtrd 2766 | 1 ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (0g‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 𝒫 cpw 4545 {csn 4571 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 1oc1o 8373 ↑m cmap 8745 Basecbs 17115 Scalarcsca 17159 ·𝑠 cvsca 17160 0gc0g 17338 Σg cgsu 17339 linC clinc 48436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-map 8747 df-seq 13904 df-gsum 17341 df-linc 48438 |
| This theorem is referenced by: lco0 48459 |
| Copyright terms: Public domain | W3C validator |