| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincval0 | Structured version Visualization version GIF version | ||
| Description: The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.) |
| Ref | Expression |
|---|---|
| lincval0 | ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (0g‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5249 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4616 | . . . 4 ⊢ ∅ ∈ {∅} |
| 3 | fvex 6844 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑀)) ∈ V | |
| 4 | map0e 8816 | . . . . . 6 ⊢ ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o) | |
| 5 | 3, 4 | mp1i 13 | . . . . 5 ⊢ (𝑀 ∈ 𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o) |
| 6 | df1o2 8401 | . . . . 5 ⊢ 1o = {∅} | |
| 7 | 5, 6 | eqtrdi 2784 | . . . 4 ⊢ (𝑀 ∈ 𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅}) |
| 8 | 2, 7 | eleqtrrid 2840 | . . 3 ⊢ (𝑀 ∈ 𝑋 → ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)) |
| 9 | 0elpw 5298 | . . . 4 ⊢ ∅ ∈ 𝒫 (Base‘𝑀) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑀 ∈ 𝑋 → ∅ ∈ 𝒫 (Base‘𝑀)) |
| 11 | lincval 48571 | . . 3 ⊢ ((𝑀 ∈ 𝑋 ∧ ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅) ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
| 12 | 8, 10, 11 | mpd3an23 1465 | . 2 ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
| 13 | mpt0 6631 | . . . . 5 ⊢ (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)) = ∅ | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ 𝑋 → (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣)) = ∅) |
| 15 | 14 | oveq2d 7371 | . . 3 ⊢ (𝑀 ∈ 𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (𝑀 Σg ∅)) |
| 16 | eqid 2733 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 17 | 16 | gsum0 18600 | . . 3 ⊢ (𝑀 Σg ∅) = (0g‘𝑀) |
| 18 | 15, 17 | eqtrdi 2784 | . 2 ⊢ (𝑀 ∈ 𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (0g‘𝑀)) |
| 19 | 12, 18 | eqtrd 2768 | 1 ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (0g‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 𝒫 cpw 4551 {csn 4577 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 1oc1o 8387 ↑m cmap 8759 Basecbs 17127 Scalarcsca 17171 ·𝑠 cvsca 17172 0gc0g 17350 Σg cgsu 17351 linC clinc 48566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-map 8761 df-seq 13916 df-gsum 17353 df-linc 48568 |
| This theorem is referenced by: lco0 48589 |
| Copyright terms: Public domain | W3C validator |