Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincval0 Structured version   Visualization version   GIF version

Theorem lincval0 48063
Description: The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
lincval0 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (0g𝑀))

Proof of Theorem lincval0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 0ex 5328 . . . . 5 ∅ ∈ V
21snid 4684 . . . 4 ∅ ∈ {∅}
3 fvex 6932 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
4 map0e 8936 . . . . . 6 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
53, 4mp1i 13 . . . . 5 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
6 df1o2 8525 . . . . 5 1o = {∅}
75, 6eqtrdi 2790 . . . 4 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
82, 7eleqtrrid 2845 . . 3 (𝑀𝑋 → ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅))
9 0elpw 5377 . . . 4 ∅ ∈ 𝒫 (Base‘𝑀)
109a1i 11 . . 3 (𝑀𝑋 → ∅ ∈ 𝒫 (Base‘𝑀))
11 lincval 48057 . . 3 ((𝑀𝑋 ∧ ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅) ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))))
128, 10, 11mpd3an23 1463 . 2 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))))
13 mpt0 6721 . . . . 5 (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣)) = ∅
1413a1i 11 . . . 4 (𝑀𝑋 → (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣)) = ∅)
1514oveq2d 7461 . . 3 (𝑀𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg ∅))
16 eqid 2734 . . . 4 (0g𝑀) = (0g𝑀)
1716gsum0 18717 . . 3 (𝑀 Σg ∅) = (0g𝑀)
1815, 17eqtrdi 2790 . 2 (𝑀𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))) = (0g𝑀))
1912, 18eqtrd 2774 1 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2103  Vcvv 3482  c0 4347  𝒫 cpw 4622  {csn 4648  cmpt 5252  cfv 6572  (class class class)co 7445  1oc1o 8511  m cmap 8880  Basecbs 17253  Scalarcsca 17309   ·𝑠 cvsca 17310  0gc0g 17494   Σg cgsu 17495   linC clinc 48052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-ov 7448  df-oprab 7449  df-mpo 7450  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-map 8882  df-seq 14049  df-gsum 17497  df-linc 48054
This theorem is referenced by:  lco0  48075
  Copyright terms: Public domain W3C validator