![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusmul | Structured version Visualization version GIF version |
Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.) |
Ref | Expression |
---|---|
qusmul.h | β’ π = (π /s (π ~QG πΌ)) |
qusmul.v | β’ π΅ = (Baseβπ ) |
qusmul.p | β’ Β· = (.rβπ ) |
qusmul.a | β’ Γ = (.rβπ) |
qusmul.r | β’ (π β π β CRing) |
qusmul.i | β’ (π β πΌ β (LIdealβπ )) |
qusmul.x | β’ (π β π β π΅) |
qusmul.y | β’ (π β π β π΅) |
Ref | Expression |
---|---|
qusmul | β’ (π β ([π](π ~QG πΌ) Γ [π](π ~QG πΌ)) = [(π Β· π)](π ~QG πΌ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusmul.x | . 2 β’ (π β π β π΅) | |
2 | qusmul.y | . 2 β’ (π β π β π΅) | |
3 | qusmul.h | . . . 4 β’ π = (π /s (π ~QG πΌ)) | |
4 | 3 | a1i 11 | . . 3 β’ (π β π = (π /s (π ~QG πΌ))) |
5 | qusmul.v | . . . 4 β’ π΅ = (Baseβπ ) | |
6 | 5 | a1i 11 | . . 3 β’ (π β π΅ = (Baseβπ )) |
7 | qusmul.r | . . . . . 6 β’ (π β π β CRing) | |
8 | 7 | crngringd 20142 | . . . . 5 β’ (π β π β Ring) |
9 | qusmul.i | . . . . 5 β’ (π β πΌ β (LIdealβπ )) | |
10 | eqid 2730 | . . . . . 6 β’ (LIdealβπ ) = (LIdealβπ ) | |
11 | 10 | lidlsubg 20989 | . . . . 5 β’ ((π β Ring β§ πΌ β (LIdealβπ )) β πΌ β (SubGrpβπ )) |
12 | 8, 9, 11 | syl2anc 582 | . . . 4 β’ (π β πΌ β (SubGrpβπ )) |
13 | eqid 2730 | . . . . 5 β’ (π ~QG πΌ) = (π ~QG πΌ) | |
14 | 5, 13 | eqger 19096 | . . . 4 β’ (πΌ β (SubGrpβπ ) β (π ~QG πΌ) Er π΅) |
15 | 12, 14 | syl 17 | . . 3 β’ (π β (π ~QG πΌ) Er π΅) |
16 | 10 | crng2idl 21029 | . . . . . 6 β’ (π β CRing β (LIdealβπ ) = (2Idealβπ )) |
17 | 7, 16 | syl 17 | . . . . 5 β’ (π β (LIdealβπ ) = (2Idealβπ )) |
18 | 9, 17 | eleqtrd 2833 | . . . 4 β’ (π β πΌ β (2Idealβπ )) |
19 | eqid 2730 | . . . . 5 β’ (2Idealβπ ) = (2Idealβπ ) | |
20 | qusmul.p | . . . . 5 β’ Β· = (.rβπ ) | |
21 | 5, 13, 19, 20 | 2idlcpbl 21023 | . . . 4 β’ ((π β Ring β§ πΌ β (2Idealβπ )) β ((π₯(π ~QG πΌ)π¦ β§ π§(π ~QG πΌ)π‘) β (π₯ Β· π§)(π ~QG πΌ)(π¦ Β· π‘))) |
22 | 8, 18, 21 | syl2anc 582 | . . 3 β’ (π β ((π₯(π ~QG πΌ)π¦ β§ π§(π ~QG πΌ)π‘) β (π₯ Β· π§)(π ~QG πΌ)(π¦ Β· π‘))) |
23 | 5, 20 | ringcl 20146 | . . . . . 6 β’ ((π β Ring β§ π β π΅ β§ π β π΅) β (π Β· π) β π΅) |
24 | 23 | 3expb 1118 | . . . . 5 β’ ((π β Ring β§ (π β π΅ β§ π β π΅)) β (π Β· π) β π΅) |
25 | 8, 24 | sylan 578 | . . . 4 β’ ((π β§ (π β π΅ β§ π β π΅)) β (π Β· π) β π΅) |
26 | 25 | caovclg 7603 | . . 3 β’ ((π β§ (π¦ β π΅ β§ π‘ β π΅)) β (π¦ Β· π‘) β π΅) |
27 | qusmul.a | . . 3 β’ Γ = (.rβπ) | |
28 | 4, 6, 15, 7, 22, 26, 20, 27 | qusmulval 17507 | . 2 β’ ((π β§ π β π΅ β§ π β π΅) β ([π](π ~QG πΌ) Γ [π](π ~QG πΌ)) = [(π Β· π)](π ~QG πΌ)) |
29 | 1, 2, 28 | mpd3an23 1461 | 1 β’ (π β ([π](π ~QG πΌ) Γ [π](π ~QG πΌ)) = [(π Β· π)](π ~QG πΌ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 class class class wbr 5149 βcfv 6544 (class class class)co 7413 Er wer 8704 [cec 8705 Basecbs 17150 .rcmulr 17204 /s cqus 17457 SubGrpcsubg 19038 ~QG cqg 19040 Ringcrg 20129 CRingccrg 20130 LIdealclidl 20930 2Idealc2idl 21007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-ec 8709 df-qs 8713 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-fz 13491 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-0g 17393 df-imas 17460 df-qus 17461 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18860 df-minusg 18861 df-sbg 18862 df-subg 19041 df-eqg 19043 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-cring 20132 df-oppr 20227 df-subrg 20461 df-lmod 20618 df-lss 20689 df-lsp 20729 df-sra 20932 df-rgmod 20933 df-lidl 20934 df-rsp 20935 df-2idl 21008 |
This theorem is referenced by: rhmquskerlem 32815 |
Copyright terms: Public domain | W3C validator |