Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusmul Structured version   Visualization version   GIF version

Theorem qusmul 32480
Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
Hypotheses
Ref Expression
qusmul.h 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
qusmul.v 𝐵 = (Base‘𝑅)
qusmul.p · = (.r𝑅)
qusmul.a × = (.r𝑄)
qusmul.r (𝜑𝑅 ∈ CRing)
qusmul.i (𝜑𝐼 ∈ (LIdeal‘𝑅))
qusmul.x (𝜑𝑋𝐵)
qusmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
qusmul (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))

Proof of Theorem qusmul
Dummy variables 𝑡 𝑥 𝑦 𝑧 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusmul.x . 2 (𝜑𝑋𝐵)
2 qusmul.y . 2 (𝜑𝑌𝐵)
3 qusmul.h . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
43a1i 11 . . 3 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
5 qusmul.v . . . 4 𝐵 = (Base‘𝑅)
65a1i 11 . . 3 (𝜑𝐵 = (Base‘𝑅))
7 qusmul.r . . . . . 6 (𝜑𝑅 ∈ CRing)
87crngringd 20060 . . . . 5 (𝜑𝑅 ∈ Ring)
9 qusmul.i . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑅))
10 eqid 2733 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1110lidlsubg 20825 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
128, 9, 11syl2anc 585 . . . 4 (𝜑𝐼 ∈ (SubGrp‘𝑅))
13 eqid 2733 . . . . 5 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
145, 13eqger 19052 . . . 4 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵)
1512, 14syl 17 . . 3 (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵)
1610crng2idl 20864 . . . . . 6 (𝑅 ∈ CRing → (LIdeal‘𝑅) = (2Ideal‘𝑅))
177, 16syl 17 . . . . 5 (𝜑 → (LIdeal‘𝑅) = (2Ideal‘𝑅))
189, 17eleqtrd 2836 . . . 4 (𝜑𝐼 ∈ (2Ideal‘𝑅))
19 eqid 2733 . . . . 5 (2Ideal‘𝑅) = (2Ideal‘𝑅)
20 qusmul.p . . . . 5 · = (.r𝑅)
215, 13, 19, 202idlcpbl 20858 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑥(𝑅 ~QG 𝐼)𝑦𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡)))
228, 18, 21syl2anc 585 . . 3 (𝜑 → ((𝑥(𝑅 ~QG 𝐼)𝑦𝑧(𝑅 ~QG 𝐼)𝑡) → (𝑥 · 𝑧)(𝑅 ~QG 𝐼)(𝑦 · 𝑡)))
235, 20ringcl 20064 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑝𝐵𝑞𝐵) → (𝑝 · 𝑞) ∈ 𝐵)
24233expb 1121 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 · 𝑞) ∈ 𝐵)
258, 24sylan 581 . . . 4 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 · 𝑞) ∈ 𝐵)
2625caovclg 7594 . . 3 ((𝜑 ∧ (𝑦𝐵𝑡𝐵)) → (𝑦 · 𝑡) ∈ 𝐵)
27 qusmul.a . . 3 × = (.r𝑄)
284, 6, 15, 7, 22, 26, 20, 27qusmulval 17497 . 2 ((𝜑𝑋𝐵𝑌𝐵) → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
291, 2, 28mpd3an23 1464 1 (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107   class class class wbr 5147  cfv 6540  (class class class)co 7404   Er wer 8696  [cec 8697  Basecbs 17140  .rcmulr 17194   /s cqus 17447  SubGrpcsubg 18994   ~QG cqg 18996  Ringcrg 20047  CRingccrg 20048  LIdealclidl 20771  2Idealc2idl 20843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-ec 8701  df-qs 8705  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-0g 17383  df-imas 17450  df-qus 17451  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-eqg 18999  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-cring 20050  df-oppr 20139  df-subrg 20349  df-lmod 20461  df-lss 20531  df-lsp 20571  df-sra 20773  df-rgmod 20774  df-lidl 20775  df-rsp 20776  df-2idl 20844
This theorem is referenced by:  rhmqusker  32502
  Copyright terms: Public domain W3C validator