![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qus0 | Structured version Visualization version GIF version |
Description: Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
qusgrp.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
qus0.p | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
qus0 | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsgsubg 19106 | . . . . . . 7 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
2 | subgrcl 19079 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
4 | eqid 2728 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | qus0.p | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
6 | 4, 5 | grpidcl 18915 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
7 | 3, 6 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 0 ∈ (Base‘𝐺)) |
8 | qusgrp.h | . . . . . 6 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) | |
9 | eqid 2728 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
10 | eqid 2728 | . . . . . 6 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
11 | 8, 4, 9, 10 | qusadd 19136 | . . . . 5 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g‘𝐺) 0 )](𝐺 ~QG 𝑆)) |
12 | 7, 7, 11 | mpd3an23 1460 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g‘𝐺) 0 )](𝐺 ~QG 𝑆)) |
13 | 4, 9, 5 | grplid 18917 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
14 | 3, 7, 13 | syl2anc 583 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
15 | 14 | eceq1d 8757 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [( 0 (+g‘𝐺) 0 )](𝐺 ~QG 𝑆) = [ 0 ](𝐺 ~QG 𝑆)) |
16 | 12, 15 | eqtrd 2768 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆)) |
17 | 8 | qusgrp 19134 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
18 | eqid 2728 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
19 | 8, 4, 18 | quseccl 19135 | . . . . 5 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
20 | 7, 19 | mpdan 686 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
21 | eqid 2728 | . . . . 5 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
22 | 18, 10, 21 | grpid 18925 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → (([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g‘𝐻) = [ 0 ](𝐺 ~QG 𝑆))) |
23 | 17, 20, 22 | syl2anc 583 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g‘𝐻) = [ 0 ](𝐺 ~QG 𝑆))) |
24 | 16, 23 | mpbid 231 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (0g‘𝐻) = [ 0 ](𝐺 ~QG 𝑆)) |
25 | 24 | eqcomd 2734 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 [cec 8716 Basecbs 17173 +gcplusg 17226 0gc0g 17414 /s cqus 17480 Grpcgrp 18883 SubGrpcsubg 19068 NrmSGrpcnsg 19069 ~QG cqg 19070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-ec 8720 df-qs 8724 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-0g 17416 df-imas 17483 df-qus 17484 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 df-subg 19071 df-nsg 19072 df-eqg 19073 |
This theorem is referenced by: qusinv 19138 ghmqusker 19231 rngqiprngimf1lem 21177 rngqiprngimf1 21183 qustgphaus 24020 qusker 33055 qus0g 33111 nsgqus0 33114 qsidomlem1 33162 qsidomlem2 33163 qsnzr 33165 qsdrngi 33200 |
Copyright terms: Public domain | W3C validator |