![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qus0 | Structured version Visualization version GIF version |
Description: Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
qusgrp.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
qus0.p | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
qus0 | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsgsubg 17834 | . . . . . . 7 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
2 | subgrcl 17807 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
4 | eqid 2771 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | qus0.p | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
6 | 4, 5 | grpidcl 17658 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
7 | 3, 6 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 0 ∈ (Base‘𝐺)) |
8 | qusgrp.h | . . . . . 6 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) | |
9 | eqid 2771 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
10 | eqid 2771 | . . . . . 6 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
11 | 8, 4, 9, 10 | qusadd 17859 | . . . . 5 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g‘𝐺) 0 )](𝐺 ~QG 𝑆)) |
12 | 7, 7, 11 | mpd3an23 1574 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g‘𝐺) 0 )](𝐺 ~QG 𝑆)) |
13 | 4, 9, 5 | grplid 17660 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
14 | 3, 7, 13 | syl2anc 573 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
15 | 14 | eceq1d 7935 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [( 0 (+g‘𝐺) 0 )](𝐺 ~QG 𝑆) = [ 0 ](𝐺 ~QG 𝑆)) |
16 | 12, 15 | eqtrd 2805 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆)) |
17 | 8 | qusgrp 17857 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
18 | eqid 2771 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
19 | 8, 4, 18 | quseccl 17858 | . . . . 5 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
20 | 7, 19 | mpdan 667 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
21 | eqid 2771 | . . . . 5 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
22 | 18, 10, 21 | grpid 17665 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → (([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g‘𝐻) = [ 0 ](𝐺 ~QG 𝑆))) |
23 | 17, 20, 22 | syl2anc 573 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g‘𝐻) = [ 0 ](𝐺 ~QG 𝑆))) |
24 | 16, 23 | mpbid 222 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (0g‘𝐻) = [ 0 ](𝐺 ~QG 𝑆)) |
25 | 24 | eqcomd 2777 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 [cec 7894 Basecbs 16064 +gcplusg 16149 0gc0g 16308 /s cqus 16373 Grpcgrp 17630 SubGrpcsubg 17796 NrmSGrpcnsg 17797 ~QG cqg 17798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-ec 7898 df-qs 7902 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-0g 16310 df-imas 16376 df-qus 16377 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-subg 17799 df-nsg 17800 df-eqg 17801 |
This theorem is referenced by: qusinv 17861 qustgphaus 22146 |
Copyright terms: Public domain | W3C validator |