MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qus0 Structured version   Visualization version   GIF version

Theorem qus0 19107
Description: Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qus0.p 0 = (0g𝐺)
Assertion
Ref Expression
qus0 (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g𝐻))

Proof of Theorem qus0
StepHypRef Expression
1 nsgsubg 19077 . . . . . . 7 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 subgrcl 19050 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
4 eqid 2724 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5 qus0.p . . . . . . 7 0 = (0g𝐺)
64, 5grpidcl 18887 . . . . . 6 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
73, 6syl 17 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → 0 ∈ (Base‘𝐺))
8 qusgrp.h . . . . . 6 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
9 eqid 2724 . . . . . 6 (+g𝐺) = (+g𝐺)
10 eqid 2724 . . . . . 6 (+g𝐻) = (+g𝐻)
118, 4, 9, 10qusadd 19106 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g𝐺) 0 )](𝐺 ~QG 𝑆))
127, 7, 11mpd3an23 1459 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g𝐺) 0 )](𝐺 ~QG 𝑆))
134, 9, 5grplid 18889 . . . . . 6 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
143, 7, 13syl2anc 583 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → ( 0 (+g𝐺) 0 ) = 0 )
1514eceq1d 8739 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → [( 0 (+g𝐺) 0 )](𝐺 ~QG 𝑆) = [ 0 ](𝐺 ~QG 𝑆))
1612, 15eqtrd 2764 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆))
178qusgrp 19104 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
18 eqid 2724 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
198, 4, 18quseccl 19105 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
207, 19mpdan 684 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
21 eqid 2724 . . . . 5 (0g𝐻) = (0g𝐻)
2218, 10, 21grpid 18897 . . . 4 ((𝐻 ∈ Grp ∧ [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → (([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g𝐻) = [ 0 ](𝐺 ~QG 𝑆)))
2317, 20, 22syl2anc 583 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g𝐻) = [ 0 ](𝐺 ~QG 𝑆)))
2416, 23mpbid 231 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (0g𝐻) = [ 0 ](𝐺 ~QG 𝑆))
2524eqcomd 2730 1 (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  cfv 6534  (class class class)co 7402  [cec 8698  Basecbs 17145  +gcplusg 17198  0gc0g 17386   /s cqus 17452  Grpcgrp 18855  SubGrpcsubg 19039  NrmSGrpcnsg 19040   ~QG cqg 19041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-ec 8702  df-qs 8706  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-fz 13483  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-0g 17388  df-imas 17455  df-qus 17456  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-subg 19042  df-nsg 19043  df-eqg 19044
This theorem is referenced by:  qusinv  19108  rngqiprngimf1lem  21139  rngqiprngimf1  21145  qustgphaus  23951  qusker  32933  qus0g  32990  nsgqus0  32993  ghmqusker  33004  qsidomlem1  33043  qsidomlem2  33044  qsnzr  33046  qsdrngi  33081
  Copyright terms: Public domain W3C validator