| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcsncl | Structured version Visualization version GIF version | ||
| Description: The Moore closure of a singleton is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrcsncl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4789 | . 2 ⊢ (𝑈 ∈ 𝑋 → {𝑈} ⊆ 𝑋) | |
| 2 | mrcfval.f | . . 3 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 3 | 2 | mrccl 17628 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑈} ⊆ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
| 4 | 1, 3 | sylan2 593 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 {csn 4606 ‘cfv 6536 Moorecmre 17599 mrClscmrc 17600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-mre 17603 df-mrc 17604 |
| This theorem is referenced by: pgpfac1lem1 20062 pgpfac1lem2 20063 pgpfac1lem3a 20064 pgpfac1lem3 20065 pgpfac1lem4 20066 pgpfac1lem5 20067 pgpfaclem1 20069 pgpfaclem2 20070 |
| Copyright terms: Public domain | W3C validator |