Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrcsncl | Structured version Visualization version GIF version |
Description: The Moore closure of a singleton is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcsncl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4701 | . 2 ⊢ (𝑈 ∈ 𝑋 → {𝑈} ⊆ 𝑋) | |
2 | mrcfval.f | . . 3 ⊢ 𝐹 = (mrCls‘𝐶) | |
3 | 2 | mrccl 16953 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑈} ⊆ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
4 | 1, 3 | sylan2 595 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 {csn 4525 ‘cfv 6340 Moorecmre 16924 mrClscmrc 16925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-int 4842 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-mre 16928 df-mrc 16929 |
This theorem is referenced by: pgpfac1lem1 19277 pgpfac1lem2 19278 pgpfac1lem3a 19279 pgpfac1lem3 19280 pgpfac1lem4 19281 pgpfac1lem5 19282 pgpfaclem1 19284 pgpfaclem2 19285 |
Copyright terms: Public domain | W3C validator |