| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcsncl | Structured version Visualization version GIF version | ||
| Description: The Moore closure of a singleton is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
| Ref | Expression |
|---|---|
| mrcsncl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4790 | . 2 ⊢ (𝑈 ∈ 𝑋 → {𝑈} ⊆ 𝑋) | |
| 2 | mrcfval.f | . . 3 ⊢ 𝐹 = (mrCls‘𝐶) | |
| 3 | 2 | mrccl 17630 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑈} ⊆ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
| 4 | 1, 3 | sylan2 593 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 {csn 4608 ‘cfv 6542 Moorecmre 17601 mrClscmrc 17602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-mre 17605 df-mrc 17606 |
| This theorem is referenced by: pgpfac1lem1 20067 pgpfac1lem2 20068 pgpfac1lem3a 20069 pgpfac1lem3 20070 pgpfac1lem4 20071 pgpfac1lem5 20072 pgpfaclem1 20074 pgpfaclem2 20075 |
| Copyright terms: Public domain | W3C validator |