MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcuni Structured version   Visualization version   GIF version

Theorem mrcuni 17665
Description: Idempotence of closure under a general union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcuni ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) = (𝐹 (𝐹𝑈)))

Proof of Theorem mrcuni
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 simpll 767 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝐶 ∈ (Moore‘𝑋))
3 ssel2 3989 . . . . . . . . 9 ((𝑈 ⊆ 𝒫 𝑋𝑠𝑈) → 𝑠 ∈ 𝒫 𝑋)
43elpwid 4613 . . . . . . . 8 ((𝑈 ⊆ 𝒫 𝑋𝑠𝑈) → 𝑠𝑋)
54adantll 714 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠𝑋)
6 mrcfval.f . . . . . . . 8 𝐹 = (mrCls‘𝐶)
76mrcssid 17661 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝑋) → 𝑠 ⊆ (𝐹𝑠))
82, 5, 7syl2anc 584 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠 ⊆ (𝐹𝑠))
96mrcf 17653 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
109ffund 6740 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → Fun 𝐹)
1110adantr 480 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → Fun 𝐹)
129fdmd 6746 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → dom 𝐹 = 𝒫 𝑋)
1312sseq2d 4027 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ⊆ dom 𝐹𝑈 ⊆ 𝒫 𝑋))
1413biimpar 477 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈 ⊆ dom 𝐹)
15 funfvima2 7250 . . . . . . . . 9 ((Fun 𝐹𝑈 ⊆ dom 𝐹) → (𝑠𝑈 → (𝐹𝑠) ∈ (𝐹𝑈)))
1611, 14, 15syl2anc 584 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝑠𝑈 → (𝐹𝑠) ∈ (𝐹𝑈)))
1716imp 406 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → (𝐹𝑠) ∈ (𝐹𝑈))
18 elssuni 4941 . . . . . . 7 ((𝐹𝑠) ∈ (𝐹𝑈) → (𝐹𝑠) ⊆ (𝐹𝑈))
1917, 18syl 17 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → (𝐹𝑠) ⊆ (𝐹𝑈))
208, 19sstrd 4005 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠 (𝐹𝑈))
2120ralrimiva 3143 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠𝑈 𝑠 (𝐹𝑈))
22 unissb 4943 . . . 4 ( 𝑈 (𝐹𝑈) ↔ ∀𝑠𝑈 𝑠 (𝐹𝑈))
2321, 22sylibr 234 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈 (𝐹𝑈))
246mrcssv 17658 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑥) ⊆ 𝑋)
2524adantr 480 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑥) ⊆ 𝑋)
2625ralrimivw 3147 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋)
279ffnd 6737 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
28 sseq1 4020 . . . . . . 7 (𝑠 = (𝐹𝑥) → (𝑠𝑋 ↔ (𝐹𝑥) ⊆ 𝑋))
2928ralima 7256 . . . . . 6 ((𝐹 Fn 𝒫 𝑋𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠𝑋 ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋))
3027, 29sylan 580 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠𝑋 ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋))
3126, 30mpbird 257 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹𝑈)𝑠𝑋)
32 unissb 4943 . . . 4 ( (𝐹𝑈) ⊆ 𝑋 ↔ ∀𝑠 ∈ (𝐹𝑈)𝑠𝑋)
3331, 32sylibr 234 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑈) ⊆ 𝑋)
346mrcss 17660 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 (𝐹𝑈) ∧ (𝐹𝑈) ⊆ 𝑋) → (𝐹 𝑈) ⊆ (𝐹 (𝐹𝑈)))
351, 23, 33, 34syl3anc 1370 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) ⊆ (𝐹 (𝐹𝑈)))
36 simpll 767 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝐶 ∈ (Moore‘𝑋))
37 elssuni 4941 . . . . . . . . 9 (𝑥𝑈𝑥 𝑈)
3837adantl 481 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝑥 𝑈)
39 sspwuni 5104 . . . . . . . . . . 11 (𝑈 ⊆ 𝒫 𝑋 𝑈𝑋)
4039biimpi 216 . . . . . . . . . 10 (𝑈 ⊆ 𝒫 𝑋 𝑈𝑋)
4140adantl 481 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈𝑋)
4241adantr 480 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝑈𝑋)
436mrcss 17660 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 𝑈 𝑈𝑋) → (𝐹𝑥) ⊆ (𝐹 𝑈))
4436, 38, 42, 43syl3anc 1370 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → (𝐹𝑥) ⊆ (𝐹 𝑈))
4544ralrimiva 3143 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈))
46 sseq1 4020 . . . . . . . 8 (𝑠 = (𝐹𝑥) → (𝑠 ⊆ (𝐹 𝑈) ↔ (𝐹𝑥) ⊆ (𝐹 𝑈)))
4746ralima 7256 . . . . . . 7 ((𝐹 Fn 𝒫 𝑋𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈) ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈)))
4827, 47sylan 580 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈) ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈)))
4945, 48mpbird 257 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈))
50 unissb 4943 . . . . 5 ( (𝐹𝑈) ⊆ (𝐹 𝑈) ↔ ∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈))
5149, 50sylibr 234 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑈) ⊆ (𝐹 𝑈))
526mrcssv 17658 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (𝐹 𝑈) ⊆ 𝑋)
5352adantr 480 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) ⊆ 𝑋)
546mrcss 17660 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) ⊆ (𝐹 𝑈) ∧ (𝐹 𝑈) ⊆ 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹‘(𝐹 𝑈)))
551, 51, 53, 54syl3anc 1370 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹‘(𝐹 𝑈)))
566mrcidm 17663 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹‘(𝐹 𝑈)) = (𝐹 𝑈))
571, 41, 56syl2anc 584 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘(𝐹 𝑈)) = (𝐹 𝑈))
5855, 57sseqtrd 4035 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹 𝑈))
5935, 58eqssd 4012 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) = (𝐹 (𝐹𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wss 3962  𝒫 cpw 4604   cuni 4911  dom cdm 5688  cima 5691  Fun wfun 6556   Fn wfn 6557  cfv 6562  Moorecmre 17626  mrClscmrc 17627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-mre 17630  df-mrc 17631
This theorem is referenced by:  mrcun  17666  isacs4lem  18601
  Copyright terms: Public domain W3C validator