MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcuni Structured version   Visualization version   GIF version

Theorem mrcuni 16721
Description: Idempotence of closure under a general union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcuni ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) = (𝐹 (𝐹𝑈)))

Proof of Theorem mrcuni
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 simpll 763 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝐶 ∈ (Moore‘𝑋))
3 ssel2 3884 . . . . . . . . 9 ((𝑈 ⊆ 𝒫 𝑋𝑠𝑈) → 𝑠 ∈ 𝒫 𝑋)
43elpwid 4465 . . . . . . . 8 ((𝑈 ⊆ 𝒫 𝑋𝑠𝑈) → 𝑠𝑋)
54adantll 710 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠𝑋)
6 mrcfval.f . . . . . . . 8 𝐹 = (mrCls‘𝐶)
76mrcssid 16717 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝑋) → 𝑠 ⊆ (𝐹𝑠))
82, 5, 7syl2anc 584 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠 ⊆ (𝐹𝑠))
96mrcf 16709 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
109ffund 6386 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → Fun 𝐹)
1110adantr 481 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → Fun 𝐹)
129fdmd 6391 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → dom 𝐹 = 𝒫 𝑋)
1312sseq2d 3920 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ⊆ dom 𝐹𝑈 ⊆ 𝒫 𝑋))
1413biimpar 478 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈 ⊆ dom 𝐹)
15 funfvima2 6859 . . . . . . . . 9 ((Fun 𝐹𝑈 ⊆ dom 𝐹) → (𝑠𝑈 → (𝐹𝑠) ∈ (𝐹𝑈)))
1611, 14, 15syl2anc 584 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝑠𝑈 → (𝐹𝑠) ∈ (𝐹𝑈)))
1716imp 407 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → (𝐹𝑠) ∈ (𝐹𝑈))
18 elssuni 4774 . . . . . . 7 ((𝐹𝑠) ∈ (𝐹𝑈) → (𝐹𝑠) ⊆ (𝐹𝑈))
1917, 18syl 17 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → (𝐹𝑠) ⊆ (𝐹𝑈))
208, 19sstrd 3899 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠 (𝐹𝑈))
2120ralrimiva 3149 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠𝑈 𝑠 (𝐹𝑈))
22 unissb 4776 . . . 4 ( 𝑈 (𝐹𝑈) ↔ ∀𝑠𝑈 𝑠 (𝐹𝑈))
2321, 22sylibr 235 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈 (𝐹𝑈))
246mrcssv 16714 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑥) ⊆ 𝑋)
2524adantr 481 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑥) ⊆ 𝑋)
2625ralrimivw 3150 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋)
279ffnd 6383 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
28 sseq1 3913 . . . . . . 7 (𝑠 = (𝐹𝑥) → (𝑠𝑋 ↔ (𝐹𝑥) ⊆ 𝑋))
2928ralima 6865 . . . . . 6 ((𝐹 Fn 𝒫 𝑋𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠𝑋 ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋))
3027, 29sylan 580 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠𝑋 ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋))
3126, 30mpbird 258 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹𝑈)𝑠𝑋)
32 unissb 4776 . . . 4 ( (𝐹𝑈) ⊆ 𝑋 ↔ ∀𝑠 ∈ (𝐹𝑈)𝑠𝑋)
3331, 32sylibr 235 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑈) ⊆ 𝑋)
346mrcss 16716 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 (𝐹𝑈) ∧ (𝐹𝑈) ⊆ 𝑋) → (𝐹 𝑈) ⊆ (𝐹 (𝐹𝑈)))
351, 23, 33, 34syl3anc 1364 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) ⊆ (𝐹 (𝐹𝑈)))
36 simpll 763 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝐶 ∈ (Moore‘𝑋))
37 elssuni 4774 . . . . . . . . 9 (𝑥𝑈𝑥 𝑈)
3837adantl 482 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝑥 𝑈)
39 sspwuni 4921 . . . . . . . . . . 11 (𝑈 ⊆ 𝒫 𝑋 𝑈𝑋)
4039biimpi 217 . . . . . . . . . 10 (𝑈 ⊆ 𝒫 𝑋 𝑈𝑋)
4140adantl 482 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈𝑋)
4241adantr 481 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝑈𝑋)
436mrcss 16716 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 𝑈 𝑈𝑋) → (𝐹𝑥) ⊆ (𝐹 𝑈))
4436, 38, 42, 43syl3anc 1364 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → (𝐹𝑥) ⊆ (𝐹 𝑈))
4544ralrimiva 3149 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈))
46 sseq1 3913 . . . . . . . 8 (𝑠 = (𝐹𝑥) → (𝑠 ⊆ (𝐹 𝑈) ↔ (𝐹𝑥) ⊆ (𝐹 𝑈)))
4746ralima 6865 . . . . . . 7 ((𝐹 Fn 𝒫 𝑋𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈) ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈)))
4827, 47sylan 580 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈) ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈)))
4945, 48mpbird 258 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈))
50 unissb 4776 . . . . 5 ( (𝐹𝑈) ⊆ (𝐹 𝑈) ↔ ∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈))
5149, 50sylibr 235 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑈) ⊆ (𝐹 𝑈))
526mrcssv 16714 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (𝐹 𝑈) ⊆ 𝑋)
5352adantr 481 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) ⊆ 𝑋)
546mrcss 16716 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) ⊆ (𝐹 𝑈) ∧ (𝐹 𝑈) ⊆ 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹‘(𝐹 𝑈)))
551, 51, 53, 54syl3anc 1364 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹‘(𝐹 𝑈)))
566mrcidm 16719 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹‘(𝐹 𝑈)) = (𝐹 𝑈))
571, 41, 56syl2anc 584 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘(𝐹 𝑈)) = (𝐹 𝑈))
5855, 57sseqtrd 3928 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹 𝑈))
5935, 58eqssd 3906 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) = (𝐹 (𝐹𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105  wss 3859  𝒫 cpw 4453   cuni 4745  dom cdm 5443  cima 5446  Fun wfun 6219   Fn wfn 6220  cfv 6225  Moorecmre 16682  mrClscmrc 16683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-int 4783  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-fv 6233  df-mre 16686  df-mrc 16687
This theorem is referenced by:  mrcun  16722  isacs4lem  17607
  Copyright terms: Public domain W3C validator