| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
| 2 | | simpll 767 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) |
| 3 | | ssel2 3978 |
. . . . . . . . 9
⊢ ((𝑈 ⊆ 𝒫 𝑋 ∧ 𝑠 ∈ 𝑈) → 𝑠 ∈ 𝒫 𝑋) |
| 4 | 3 | elpwid 4609 |
. . . . . . . 8
⊢ ((𝑈 ⊆ 𝒫 𝑋 ∧ 𝑠 ∈ 𝑈) → 𝑠 ⊆ 𝑋) |
| 5 | 4 | adantll 714 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → 𝑠 ⊆ 𝑋) |
| 6 | | mrcfval.f |
. . . . . . . 8
⊢ 𝐹 = (mrCls‘𝐶) |
| 7 | 6 | mrcssid 17660 |
. . . . . . 7
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ⊆ 𝑋) → 𝑠 ⊆ (𝐹‘𝑠)) |
| 8 | 2, 5, 7 | syl2anc 584 |
. . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → 𝑠 ⊆ (𝐹‘𝑠)) |
| 9 | 6 | mrcf 17652 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
| 10 | 9 | ffund 6740 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (Moore‘𝑋) → Fun 𝐹) |
| 11 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → Fun 𝐹) |
| 12 | 9 | fdmd 6746 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (Moore‘𝑋) → dom 𝐹 = 𝒫 𝑋) |
| 13 | 12 | sseq2d 4016 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ⊆ dom 𝐹 ↔ 𝑈 ⊆ 𝒫 𝑋)) |
| 14 | 13 | biimpar 477 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈 ⊆ dom 𝐹) |
| 15 | | funfvima2 7251 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑈 ⊆ dom 𝐹) → (𝑠 ∈ 𝑈 → (𝐹‘𝑠) ∈ (𝐹 “ 𝑈))) |
| 16 | 11, 14, 15 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝑠 ∈ 𝑈 → (𝐹‘𝑠) ∈ (𝐹 “ 𝑈))) |
| 17 | 16 | imp 406 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → (𝐹‘𝑠) ∈ (𝐹 “ 𝑈)) |
| 18 | | elssuni 4937 |
. . . . . . 7
⊢ ((𝐹‘𝑠) ∈ (𝐹 “ 𝑈) → (𝐹‘𝑠) ⊆ ∪ (𝐹 “ 𝑈)) |
| 19 | 17, 18 | syl 17 |
. . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → (𝐹‘𝑠) ⊆ ∪ (𝐹 “ 𝑈)) |
| 20 | 8, 19 | sstrd 3994 |
. . . . 5
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → 𝑠 ⊆ ∪ (𝐹 “ 𝑈)) |
| 21 | 20 | ralrimiva 3146 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ 𝑈 𝑠 ⊆ ∪ (𝐹 “ 𝑈)) |
| 22 | | unissb 4939 |
. . . 4
⊢ (∪ 𝑈
⊆ ∪ (𝐹 “ 𝑈) ↔ ∀𝑠 ∈ 𝑈 𝑠 ⊆ ∪ (𝐹 “ 𝑈)) |
| 23 | 21, 22 | sylibr 234 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∪ 𝑈 ⊆ ∪ (𝐹
“ 𝑈)) |
| 24 | 6 | mrcssv 17657 |
. . . . . . 7
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑥) ⊆ 𝑋) |
| 25 | 24 | adantr 480 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘𝑥) ⊆ 𝑋) |
| 26 | 25 | ralrimivw 3150 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ 𝑋) |
| 27 | 9 | ffnd 6737 |
. . . . . 6
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋) |
| 28 | | sseq1 4009 |
. . . . . . 7
⊢ (𝑠 = (𝐹‘𝑥) → (𝑠 ⊆ 𝑋 ↔ (𝐹‘𝑥) ⊆ 𝑋)) |
| 29 | 28 | ralima 7257 |
. . . . . 6
⊢ ((𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ 𝑋 ↔ ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ 𝑋)) |
| 30 | 27, 29 | sylan 580 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ 𝑋 ↔ ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ 𝑋)) |
| 31 | 26, 30 | mpbird 257 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ 𝑋) |
| 32 | | unissb 4939 |
. . . 4
⊢ (∪ (𝐹
“ 𝑈) ⊆ 𝑋 ↔ ∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ 𝑋) |
| 33 | 31, 32 | sylibr 234 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∪ (𝐹 “ 𝑈) ⊆ 𝑋) |
| 34 | 6 | mrcss 17659 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ ∪ (𝐹 “ 𝑈) ∧ ∪ (𝐹 “ 𝑈) ⊆ 𝑋) → (𝐹‘∪ 𝑈) ⊆ (𝐹‘∪ (𝐹 “ 𝑈))) |
| 35 | 1, 23, 33, 34 | syl3anc 1373 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ 𝑈) ⊆ (𝐹‘∪ (𝐹 “ 𝑈))) |
| 36 | | simpll 767 |
. . . . . . . 8
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) |
| 37 | | elssuni 4937 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑈 → 𝑥 ⊆ ∪ 𝑈) |
| 38 | 37 | adantl 481 |
. . . . . . . 8
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑈) → 𝑥 ⊆ ∪ 𝑈) |
| 39 | | sspwuni 5100 |
. . . . . . . . . . 11
⊢ (𝑈 ⊆ 𝒫 𝑋 ↔ ∪ 𝑈
⊆ 𝑋) |
| 40 | 39 | biimpi 216 |
. . . . . . . . . 10
⊢ (𝑈 ⊆ 𝒫 𝑋 → ∪ 𝑈
⊆ 𝑋) |
| 41 | 40 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∪ 𝑈 ⊆ 𝑋) |
| 42 | 41 | adantr 480 |
. . . . . . . 8
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑈) → ∪ 𝑈 ⊆ 𝑋) |
| 43 | 6 | mrcss 17659 |
. . . . . . . 8
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ ∪ 𝑈 ∧ ∪ 𝑈
⊆ 𝑋) → (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈)) |
| 44 | 36, 38, 42, 43 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑈) → (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈)) |
| 45 | 44 | ralrimiva 3146 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈)) |
| 46 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑠 = (𝐹‘𝑥) → (𝑠 ⊆ (𝐹‘∪ 𝑈) ↔ (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈))) |
| 47 | 46 | ralima 7257 |
. . . . . . 7
⊢ ((𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ (𝐹‘∪ 𝑈) ↔ ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈))) |
| 48 | 27, 47 | sylan 580 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ (𝐹‘∪ 𝑈) ↔ ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈))) |
| 49 | 45, 48 | mpbird 257 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ (𝐹‘∪ 𝑈)) |
| 50 | | unissb 4939 |
. . . . 5
⊢ (∪ (𝐹
“ 𝑈) ⊆ (𝐹‘∪ 𝑈)
↔ ∀𝑠 ∈
(𝐹 “ 𝑈)𝑠 ⊆ (𝐹‘∪ 𝑈)) |
| 51 | 49, 50 | sylibr 234 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∪ (𝐹 “ 𝑈) ⊆ (𝐹‘∪ 𝑈)) |
| 52 | 6 | mrcssv 17657 |
. . . . 5
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘∪ 𝑈) ⊆ 𝑋) |
| 53 | 52 | adantr 480 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ 𝑈) ⊆ 𝑋) |
| 54 | 6 | mrcss 17659 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ (𝐹
“ 𝑈) ⊆ (𝐹‘∪ 𝑈)
∧ (𝐹‘∪ 𝑈)
⊆ 𝑋) → (𝐹‘∪ (𝐹
“ 𝑈)) ⊆ (𝐹‘(𝐹‘∪ 𝑈))) |
| 55 | 1, 51, 53, 54 | syl3anc 1373 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ (𝐹 “ 𝑈)) ⊆ (𝐹‘(𝐹‘∪ 𝑈))) |
| 56 | 6 | mrcidm 17662 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ 𝑋) → (𝐹‘(𝐹‘∪ 𝑈)) = (𝐹‘∪ 𝑈)) |
| 57 | 1, 41, 56 | syl2anc 584 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘(𝐹‘∪ 𝑈)) = (𝐹‘∪ 𝑈)) |
| 58 | 55, 57 | sseqtrd 4020 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ (𝐹 “ 𝑈)) ⊆ (𝐹‘∪ 𝑈)) |
| 59 | 35, 58 | eqssd 4001 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ 𝑈) = (𝐹‘∪ (𝐹 “ 𝑈))) |