MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcuni Structured version   Visualization version   GIF version

Theorem mrcuni 17582
Description: Idempotence of closure under a general union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcuni ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) = (𝐹 (𝐹𝑈)))

Proof of Theorem mrcuni
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 simpll 766 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝐶 ∈ (Moore‘𝑋))
3 ssel2 3941 . . . . . . . . 9 ((𝑈 ⊆ 𝒫 𝑋𝑠𝑈) → 𝑠 ∈ 𝒫 𝑋)
43elpwid 4572 . . . . . . . 8 ((𝑈 ⊆ 𝒫 𝑋𝑠𝑈) → 𝑠𝑋)
54adantll 714 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠𝑋)
6 mrcfval.f . . . . . . . 8 𝐹 = (mrCls‘𝐶)
76mrcssid 17578 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝑋) → 𝑠 ⊆ (𝐹𝑠))
82, 5, 7syl2anc 584 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠 ⊆ (𝐹𝑠))
96mrcf 17570 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
109ffund 6692 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → Fun 𝐹)
1110adantr 480 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → Fun 𝐹)
129fdmd 6698 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → dom 𝐹 = 𝒫 𝑋)
1312sseq2d 3979 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ⊆ dom 𝐹𝑈 ⊆ 𝒫 𝑋))
1413biimpar 477 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈 ⊆ dom 𝐹)
15 funfvima2 7205 . . . . . . . . 9 ((Fun 𝐹𝑈 ⊆ dom 𝐹) → (𝑠𝑈 → (𝐹𝑠) ∈ (𝐹𝑈)))
1611, 14, 15syl2anc 584 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝑠𝑈 → (𝐹𝑠) ∈ (𝐹𝑈)))
1716imp 406 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → (𝐹𝑠) ∈ (𝐹𝑈))
18 elssuni 4901 . . . . . . 7 ((𝐹𝑠) ∈ (𝐹𝑈) → (𝐹𝑠) ⊆ (𝐹𝑈))
1917, 18syl 17 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → (𝐹𝑠) ⊆ (𝐹𝑈))
208, 19sstrd 3957 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠 (𝐹𝑈))
2120ralrimiva 3125 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠𝑈 𝑠 (𝐹𝑈))
22 unissb 4903 . . . 4 ( 𝑈 (𝐹𝑈) ↔ ∀𝑠𝑈 𝑠 (𝐹𝑈))
2321, 22sylibr 234 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈 (𝐹𝑈))
246mrcssv 17575 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑥) ⊆ 𝑋)
2524adantr 480 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑥) ⊆ 𝑋)
2625ralrimivw 3129 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋)
279ffnd 6689 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
28 sseq1 3972 . . . . . . 7 (𝑠 = (𝐹𝑥) → (𝑠𝑋 ↔ (𝐹𝑥) ⊆ 𝑋))
2928ralima 7211 . . . . . 6 ((𝐹 Fn 𝒫 𝑋𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠𝑋 ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋))
3027, 29sylan 580 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠𝑋 ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋))
3126, 30mpbird 257 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹𝑈)𝑠𝑋)
32 unissb 4903 . . . 4 ( (𝐹𝑈) ⊆ 𝑋 ↔ ∀𝑠 ∈ (𝐹𝑈)𝑠𝑋)
3331, 32sylibr 234 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑈) ⊆ 𝑋)
346mrcss 17577 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 (𝐹𝑈) ∧ (𝐹𝑈) ⊆ 𝑋) → (𝐹 𝑈) ⊆ (𝐹 (𝐹𝑈)))
351, 23, 33, 34syl3anc 1373 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) ⊆ (𝐹 (𝐹𝑈)))
36 simpll 766 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝐶 ∈ (Moore‘𝑋))
37 elssuni 4901 . . . . . . . . 9 (𝑥𝑈𝑥 𝑈)
3837adantl 481 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝑥 𝑈)
39 sspwuni 5064 . . . . . . . . . . 11 (𝑈 ⊆ 𝒫 𝑋 𝑈𝑋)
4039biimpi 216 . . . . . . . . . 10 (𝑈 ⊆ 𝒫 𝑋 𝑈𝑋)
4140adantl 481 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈𝑋)
4241adantr 480 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝑈𝑋)
436mrcss 17577 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 𝑈 𝑈𝑋) → (𝐹𝑥) ⊆ (𝐹 𝑈))
4436, 38, 42, 43syl3anc 1373 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → (𝐹𝑥) ⊆ (𝐹 𝑈))
4544ralrimiva 3125 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈))
46 sseq1 3972 . . . . . . . 8 (𝑠 = (𝐹𝑥) → (𝑠 ⊆ (𝐹 𝑈) ↔ (𝐹𝑥) ⊆ (𝐹 𝑈)))
4746ralima 7211 . . . . . . 7 ((𝐹 Fn 𝒫 𝑋𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈) ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈)))
4827, 47sylan 580 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈) ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈)))
4945, 48mpbird 257 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈))
50 unissb 4903 . . . . 5 ( (𝐹𝑈) ⊆ (𝐹 𝑈) ↔ ∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈))
5149, 50sylibr 234 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑈) ⊆ (𝐹 𝑈))
526mrcssv 17575 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (𝐹 𝑈) ⊆ 𝑋)
5352adantr 480 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) ⊆ 𝑋)
546mrcss 17577 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) ⊆ (𝐹 𝑈) ∧ (𝐹 𝑈) ⊆ 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹‘(𝐹 𝑈)))
551, 51, 53, 54syl3anc 1373 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹‘(𝐹 𝑈)))
566mrcidm 17580 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹‘(𝐹 𝑈)) = (𝐹 𝑈))
571, 41, 56syl2anc 584 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘(𝐹 𝑈)) = (𝐹 𝑈))
5855, 57sseqtrd 3983 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹 𝑈))
5935, 58eqssd 3964 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) = (𝐹 (𝐹𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914  𝒫 cpw 4563   cuni 4871  dom cdm 5638  cima 5641  Fun wfun 6505   Fn wfn 6506  cfv 6511  Moorecmre 17543  mrClscmrc 17544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-mre 17547  df-mrc 17548
This theorem is referenced by:  mrcun  17583  isacs4lem  18503
  Copyright terms: Public domain W3C validator