Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋)) |
2 | | simpll 763 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) |
3 | | ssel2 3912 |
. . . . . . . . 9
⊢ ((𝑈 ⊆ 𝒫 𝑋 ∧ 𝑠 ∈ 𝑈) → 𝑠 ∈ 𝒫 𝑋) |
4 | 3 | elpwid 4541 |
. . . . . . . 8
⊢ ((𝑈 ⊆ 𝒫 𝑋 ∧ 𝑠 ∈ 𝑈) → 𝑠 ⊆ 𝑋) |
5 | 4 | adantll 710 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → 𝑠 ⊆ 𝑋) |
6 | | mrcfval.f |
. . . . . . . 8
⊢ 𝐹 = (mrCls‘𝐶) |
7 | 6 | mrcssid 17243 |
. . . . . . 7
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠 ⊆ 𝑋) → 𝑠 ⊆ (𝐹‘𝑠)) |
8 | 2, 5, 7 | syl2anc 583 |
. . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → 𝑠 ⊆ (𝐹‘𝑠)) |
9 | 6 | mrcf 17235 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋⟶𝐶) |
10 | 9 | ffund 6588 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (Moore‘𝑋) → Fun 𝐹) |
11 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → Fun 𝐹) |
12 | 9 | fdmd 6595 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (Moore‘𝑋) → dom 𝐹 = 𝒫 𝑋) |
13 | 12 | sseq2d 3949 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ⊆ dom 𝐹 ↔ 𝑈 ⊆ 𝒫 𝑋)) |
14 | 13 | biimpar 477 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈 ⊆ dom 𝐹) |
15 | | funfvima2 7089 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑈 ⊆ dom 𝐹) → (𝑠 ∈ 𝑈 → (𝐹‘𝑠) ∈ (𝐹 “ 𝑈))) |
16 | 11, 14, 15 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝑠 ∈ 𝑈 → (𝐹‘𝑠) ∈ (𝐹 “ 𝑈))) |
17 | 16 | imp 406 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → (𝐹‘𝑠) ∈ (𝐹 “ 𝑈)) |
18 | | elssuni 4868 |
. . . . . . 7
⊢ ((𝐹‘𝑠) ∈ (𝐹 “ 𝑈) → (𝐹‘𝑠) ⊆ ∪ (𝐹 “ 𝑈)) |
19 | 17, 18 | syl 17 |
. . . . . 6
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → (𝐹‘𝑠) ⊆ ∪ (𝐹 “ 𝑈)) |
20 | 8, 19 | sstrd 3927 |
. . . . 5
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠 ∈ 𝑈) → 𝑠 ⊆ ∪ (𝐹 “ 𝑈)) |
21 | 20 | ralrimiva 3107 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ 𝑈 𝑠 ⊆ ∪ (𝐹 “ 𝑈)) |
22 | | unissb 4870 |
. . . 4
⊢ (∪ 𝑈
⊆ ∪ (𝐹 “ 𝑈) ↔ ∀𝑠 ∈ 𝑈 𝑠 ⊆ ∪ (𝐹 “ 𝑈)) |
23 | 21, 22 | sylibr 233 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∪ 𝑈 ⊆ ∪ (𝐹
“ 𝑈)) |
24 | 6 | mrcssv 17240 |
. . . . . . 7
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑥) ⊆ 𝑋) |
25 | 24 | adantr 480 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘𝑥) ⊆ 𝑋) |
26 | 25 | ralrimivw 3108 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ 𝑋) |
27 | 9 | ffnd 6585 |
. . . . . 6
⊢ (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋) |
28 | | sseq1 3942 |
. . . . . . 7
⊢ (𝑠 = (𝐹‘𝑥) → (𝑠 ⊆ 𝑋 ↔ (𝐹‘𝑥) ⊆ 𝑋)) |
29 | 28 | ralima 7096 |
. . . . . 6
⊢ ((𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ 𝑋 ↔ ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ 𝑋)) |
30 | 27, 29 | sylan 579 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ 𝑋 ↔ ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ 𝑋)) |
31 | 26, 30 | mpbird 256 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ 𝑋) |
32 | | unissb 4870 |
. . . 4
⊢ (∪ (𝐹
“ 𝑈) ⊆ 𝑋 ↔ ∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ 𝑋) |
33 | 31, 32 | sylibr 233 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∪ (𝐹 “ 𝑈) ⊆ 𝑋) |
34 | 6 | mrcss 17242 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ ∪ (𝐹 “ 𝑈) ∧ ∪ (𝐹 “ 𝑈) ⊆ 𝑋) → (𝐹‘∪ 𝑈) ⊆ (𝐹‘∪ (𝐹 “ 𝑈))) |
35 | 1, 23, 33, 34 | syl3anc 1369 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ 𝑈) ⊆ (𝐹‘∪ (𝐹 “ 𝑈))) |
36 | | simpll 763 |
. . . . . . . 8
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ (Moore‘𝑋)) |
37 | | elssuni 4868 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑈 → 𝑥 ⊆ ∪ 𝑈) |
38 | 37 | adantl 481 |
. . . . . . . 8
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑈) → 𝑥 ⊆ ∪ 𝑈) |
39 | | sspwuni 5025 |
. . . . . . . . . . 11
⊢ (𝑈 ⊆ 𝒫 𝑋 ↔ ∪ 𝑈
⊆ 𝑋) |
40 | 39 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑈 ⊆ 𝒫 𝑋 → ∪ 𝑈
⊆ 𝑋) |
41 | 40 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∪ 𝑈 ⊆ 𝑋) |
42 | 41 | adantr 480 |
. . . . . . . 8
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑈) → ∪ 𝑈 ⊆ 𝑋) |
43 | 6 | mrcss 17242 |
. . . . . . . 8
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ⊆ ∪ 𝑈 ∧ ∪ 𝑈
⊆ 𝑋) → (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈)) |
44 | 36, 38, 42, 43 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥 ∈ 𝑈) → (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈)) |
45 | 44 | ralrimiva 3107 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈)) |
46 | | sseq1 3942 |
. . . . . . . 8
⊢ (𝑠 = (𝐹‘𝑥) → (𝑠 ⊆ (𝐹‘∪ 𝑈) ↔ (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈))) |
47 | 46 | ralima 7096 |
. . . . . . 7
⊢ ((𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ (𝐹‘∪ 𝑈) ↔ ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈))) |
48 | 27, 47 | sylan 579 |
. . . . . 6
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ (𝐹‘∪ 𝑈) ↔ ∀𝑥 ∈ 𝑈 (𝐹‘𝑥) ⊆ (𝐹‘∪ 𝑈))) |
49 | 45, 48 | mpbird 256 |
. . . . 5
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹 “ 𝑈)𝑠 ⊆ (𝐹‘∪ 𝑈)) |
50 | | unissb 4870 |
. . . . 5
⊢ (∪ (𝐹
“ 𝑈) ⊆ (𝐹‘∪ 𝑈)
↔ ∀𝑠 ∈
(𝐹 “ 𝑈)𝑠 ⊆ (𝐹‘∪ 𝑈)) |
51 | 49, 50 | sylibr 233 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∪ (𝐹 “ 𝑈) ⊆ (𝐹‘∪ 𝑈)) |
52 | 6 | mrcssv 17240 |
. . . . 5
⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘∪ 𝑈) ⊆ 𝑋) |
53 | 52 | adantr 480 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ 𝑈) ⊆ 𝑋) |
54 | 6 | mrcss 17242 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ (𝐹
“ 𝑈) ⊆ (𝐹‘∪ 𝑈)
∧ (𝐹‘∪ 𝑈)
⊆ 𝑋) → (𝐹‘∪ (𝐹
“ 𝑈)) ⊆ (𝐹‘(𝐹‘∪ 𝑈))) |
55 | 1, 51, 53, 54 | syl3anc 1369 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ (𝐹 “ 𝑈)) ⊆ (𝐹‘(𝐹‘∪ 𝑈))) |
56 | 6 | mrcidm 17245 |
. . . 4
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∪ 𝑈
⊆ 𝑋) → (𝐹‘(𝐹‘∪ 𝑈)) = (𝐹‘∪ 𝑈)) |
57 | 1, 41, 56 | syl2anc 583 |
. . 3
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘(𝐹‘∪ 𝑈)) = (𝐹‘∪ 𝑈)) |
58 | 55, 57 | sseqtrd 3957 |
. 2
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ (𝐹 “ 𝑈)) ⊆ (𝐹‘∪ 𝑈)) |
59 | 35, 58 | eqssd 3934 |
1
⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘∪ 𝑈) = (𝐹‘∪ (𝐹 “ 𝑈))) |