Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > msubrsub | Structured version Visualization version GIF version |
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
msubffval.v | ⊢ 𝑉 = (mVR‘𝑇) |
msubffval.r | ⊢ 𝑅 = (mREx‘𝑇) |
msubffval.s | ⊢ 𝑆 = (mSubst‘𝑇) |
msubffval.e | ⊢ 𝐸 = (mEx‘𝑇) |
msubffval.o | ⊢ 𝑂 = (mRSubst‘𝑇) |
Ref | Expression |
---|---|
msubrsub | ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (2nd ‘((𝑆‘𝐹)‘𝑋)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msubffval.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | msubffval.r | . . 3 ⊢ 𝑅 = (mREx‘𝑇) | |
3 | msubffval.s | . . 3 ⊢ 𝑆 = (mSubst‘𝑇) | |
4 | msubffval.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
5 | msubffval.o | . . 3 ⊢ 𝑂 = (mRSubst‘𝑇) | |
6 | 1, 2, 3, 4, 5 | msubval 33487 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
7 | fvex 6787 | . . 3 ⊢ (1st ‘𝑋) ∈ V | |
8 | fvex 6787 | . . 3 ⊢ ((𝑂‘𝐹)‘(2nd ‘𝑋)) ∈ V | |
9 | 7, 8 | op2ndd 7842 | . 2 ⊢ (((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉 → (2nd ‘((𝑆‘𝐹)‘𝑋)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) |
10 | 6, 9 | syl 17 | 1 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (2nd ‘((𝑆‘𝐹)‘𝑋)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 〈cop 4567 ⟶wf 6429 ‘cfv 6433 1st c1st 7829 2nd c2nd 7830 mVRcmvar 33423 mRExcmrex 33428 mExcmex 33429 mRSubstcmrsub 33432 mSubstcmsub 33433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-2nd 7832 df-pm 8618 df-msub 33453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |