Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubrsub Structured version   Visualization version   GIF version

Theorem msubrsub 35306
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v 𝑉 = (mVR‘𝑇)
msubffval.r 𝑅 = (mREx‘𝑇)
msubffval.s 𝑆 = (mSubst‘𝑇)
msubffval.e 𝐸 = (mEx‘𝑇)
msubffval.o 𝑂 = (mRSubst‘𝑇)
Assertion
Ref Expression
msubrsub ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → (2nd ‘((𝑆𝐹)‘𝑋)) = ((𝑂𝐹)‘(2nd𝑋)))

Proof of Theorem msubrsub
StepHypRef Expression
1 msubffval.v . . 3 𝑉 = (mVR‘𝑇)
2 msubffval.r . . 3 𝑅 = (mREx‘𝑇)
3 msubffval.s . . 3 𝑆 = (mSubst‘𝑇)
4 msubffval.e . . 3 𝐸 = (mEx‘𝑇)
5 msubffval.o . . 3 𝑂 = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubval 35305 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ((𝑆𝐹)‘𝑋) = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)
7 fvex 6913 . . 3 (1st𝑋) ∈ V
8 fvex 6913 . . 3 ((𝑂𝐹)‘(2nd𝑋)) ∈ V
97, 8op2ndd 8013 . 2 (((𝑆𝐹)‘𝑋) = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩ → (2nd ‘((𝑆𝐹)‘𝑋)) = ((𝑂𝐹)‘(2nd𝑋)))
106, 9syl 17 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → (2nd ‘((𝑆𝐹)‘𝑋)) = ((𝑂𝐹)‘(2nd𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  wss 3946  cop 4638  wf 6549  cfv 6553  1st c1st 8000  2nd c2nd 8001  mVRcmvar 35241  mRExcmrex 35246  mExcmex 35247  mRSubstcmrsub 35250  mSubstcmsub 35251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7426  df-oprab 7427  df-mpo 7428  df-2nd 8003  df-pm 8857  df-msub 35271
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator