![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > msubrsub | Structured version Visualization version GIF version |
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
msubffval.v | β’ π = (mVRβπ) |
msubffval.r | β’ π = (mRExβπ) |
msubffval.s | β’ π = (mSubstβπ) |
msubffval.e | β’ πΈ = (mExβπ) |
msubffval.o | β’ π = (mRSubstβπ) |
Ref | Expression |
---|---|
msubrsub | β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β (2nd β((πβπΉ)βπ)) = ((πβπΉ)β(2nd βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msubffval.v | . . 3 β’ π = (mVRβπ) | |
2 | msubffval.r | . . 3 β’ π = (mRExβπ) | |
3 | msubffval.s | . . 3 β’ π = (mSubstβπ) | |
4 | msubffval.e | . . 3 β’ πΈ = (mExβπ) | |
5 | msubffval.o | . . 3 β’ π = (mRSubstβπ) | |
6 | 1, 2, 3, 4, 5 | msubval 34516 | . 2 β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β ((πβπΉ)βπ) = β¨(1st βπ), ((πβπΉ)β(2nd βπ))β©) |
7 | fvex 6905 | . . 3 β’ (1st βπ) β V | |
8 | fvex 6905 | . . 3 β’ ((πβπΉ)β(2nd βπ)) β V | |
9 | 7, 8 | op2ndd 7986 | . 2 β’ (((πβπΉ)βπ) = β¨(1st βπ), ((πβπΉ)β(2nd βπ))β© β (2nd β((πβπΉ)βπ)) = ((πβπΉ)β(2nd βπ))) |
10 | 6, 9 | syl 17 | 1 β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β (2nd β((πβπΉ)βπ)) = ((πβπΉ)β(2nd βπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 β wss 3949 β¨cop 4635 βΆwf 6540 βcfv 6544 1st c1st 7973 2nd c2nd 7974 mVRcmvar 34452 mRExcmrex 34457 mExcmex 34458 mRSubstcmrsub 34461 mSubstcmsub 34462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-2nd 7976 df-pm 8823 df-msub 34482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |