| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msubval | Structured version Visualization version GIF version | ||
| Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| msubffval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| msubffval.r | ⊢ 𝑅 = (mREx‘𝑇) |
| msubffval.s | ⊢ 𝑆 = (mSubst‘𝑇) |
| msubffval.e | ⊢ 𝐸 = (mEx‘𝑇) |
| msubffval.o | ⊢ 𝑂 = (mRSubst‘𝑇) |
| Ref | Expression |
|---|---|
| msubval | ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msubffval.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 2 | msubffval.r | . . . 4 ⊢ 𝑅 = (mREx‘𝑇) | |
| 3 | msubffval.s | . . . 4 ⊢ 𝑆 = (mSubst‘𝑇) | |
| 4 | msubffval.e | . . . 4 ⊢ 𝐸 = (mEx‘𝑇) | |
| 5 | msubffval.o | . . . 4 ⊢ 𝑂 = (mRSubst‘𝑇) | |
| 6 | 1, 2, 3, 4, 5 | msubfval 35556 | . . 3 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) |
| 7 | 6 | 3adant3 1132 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) |
| 8 | simpr 484 | . . . 4 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋) | |
| 9 | 8 | fveq2d 6826 | . . 3 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → (1st ‘𝑒) = (1st ‘𝑋)) |
| 10 | 8 | fveq2d 6826 | . . . 4 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → (2nd ‘𝑒) = (2nd ‘𝑋)) |
| 11 | 10 | fveq2d 6826 | . . 3 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → ((𝑂‘𝐹)‘(2nd ‘𝑒)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) |
| 12 | 9, 11 | opeq12d 4833 | . 2 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉 = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
| 13 | simp3 1138 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → 𝑋 ∈ 𝐸) | |
| 14 | opex 5404 | . . 3 ⊢ 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉 ∈ V | |
| 15 | 14 | a1i 11 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉 ∈ V) |
| 16 | 7, 12, 13, 15 | fvmptd 6936 | 1 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 〈cop 4582 ↦ cmpt 5172 ⟶wf 6477 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 mVRcmvar 35493 mRExcmrex 35498 mExcmex 35499 mRSubstcmrsub 35502 mSubstcmsub 35503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-pm 8753 df-msub 35523 |
| This theorem is referenced by: msubrsub 35558 msubty 35559 msubff1 35588 |
| Copyright terms: Public domain | W3C validator |