Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubval Structured version   Visualization version   GIF version

Theorem msubval 35493
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v 𝑉 = (mVR‘𝑇)
msubffval.r 𝑅 = (mREx‘𝑇)
msubffval.s 𝑆 = (mSubst‘𝑇)
msubffval.e 𝐸 = (mEx‘𝑇)
msubffval.o 𝑂 = (mRSubst‘𝑇)
Assertion
Ref Expression
msubval ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ((𝑆𝐹)‘𝑋) = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)

Proof of Theorem msubval
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 msubffval.v . . . 4 𝑉 = (mVR‘𝑇)
2 msubffval.r . . . 4 𝑅 = (mREx‘𝑇)
3 msubffval.s . . . 4 𝑆 = (mSubst‘𝑇)
4 msubffval.e . . . 4 𝐸 = (mEx‘𝑇)
5 msubffval.o . . . 4 𝑂 = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubfval 35492 . . 3 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
763adant3 1132 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
8 simpr 484 . . . 4 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
98fveq2d 6924 . . 3 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → (1st𝑒) = (1st𝑋))
108fveq2d 6924 . . . 4 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → (2nd𝑒) = (2nd𝑋))
1110fveq2d 6924 . . 3 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → ((𝑂𝐹)‘(2nd𝑒)) = ((𝑂𝐹)‘(2nd𝑋)))
129, 11opeq12d 4905 . 2 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩ = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)
13 simp3 1138 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → 𝑋𝐸)
14 opex 5484 . . 3 ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩ ∈ V
1514a1i 11 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩ ∈ V)
167, 12, 13, 15fvmptd 7036 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ((𝑆𝐹)‘𝑋) = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  cop 4654  cmpt 5249  wf 6569  cfv 6573  1st c1st 8028  2nd c2nd 8029  mVRcmvar 35429  mRExcmrex 35434  mExcmex 35435  mRSubstcmrsub 35438  mSubstcmsub 35439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-pm 8887  df-msub 35459
This theorem is referenced by:  msubrsub  35494  msubty  35495  msubff1  35524
  Copyright terms: Public domain W3C validator