| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msubval | Structured version Visualization version GIF version | ||
| Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| msubffval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| msubffval.r | ⊢ 𝑅 = (mREx‘𝑇) |
| msubffval.s | ⊢ 𝑆 = (mSubst‘𝑇) |
| msubffval.e | ⊢ 𝐸 = (mEx‘𝑇) |
| msubffval.o | ⊢ 𝑂 = (mRSubst‘𝑇) |
| Ref | Expression |
|---|---|
| msubval | ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msubffval.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 2 | msubffval.r | . . . 4 ⊢ 𝑅 = (mREx‘𝑇) | |
| 3 | msubffval.s | . . . 4 ⊢ 𝑆 = (mSubst‘𝑇) | |
| 4 | msubffval.e | . . . 4 ⊢ 𝐸 = (mEx‘𝑇) | |
| 5 | msubffval.o | . . . 4 ⊢ 𝑂 = (mRSubst‘𝑇) | |
| 6 | 1, 2, 3, 4, 5 | msubfval 35589 | . . 3 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) |
| 7 | 6 | 3adant3 1132 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) |
| 8 | simpr 484 | . . . 4 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋) | |
| 9 | 8 | fveq2d 6832 | . . 3 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → (1st ‘𝑒) = (1st ‘𝑋)) |
| 10 | 8 | fveq2d 6832 | . . . 4 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → (2nd ‘𝑒) = (2nd ‘𝑋)) |
| 11 | 10 | fveq2d 6832 | . . 3 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → ((𝑂‘𝐹)‘(2nd ‘𝑒)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) |
| 12 | 9, 11 | opeq12d 4832 | . 2 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉 = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
| 13 | simp3 1138 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → 𝑋 ∈ 𝐸) | |
| 14 | opex 5407 | . . 3 ⊢ 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉 ∈ V | |
| 15 | 14 | a1i 11 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉 ∈ V) |
| 16 | 7, 12, 13, 15 | fvmptd 6942 | 1 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 〈cop 4581 ↦ cmpt 5174 ⟶wf 6482 ‘cfv 6486 1st c1st 7925 2nd c2nd 7926 mVRcmvar 35526 mRExcmrex 35531 mExcmex 35532 mRSubstcmrsub 35535 mSubstcmsub 35536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-pm 8759 df-msub 35556 |
| This theorem is referenced by: msubrsub 35591 msubty 35592 msubff1 35621 |
| Copyright terms: Public domain | W3C validator |