Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubval Structured version   Visualization version   GIF version

Theorem msubval 35557
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v 𝑉 = (mVR‘𝑇)
msubffval.r 𝑅 = (mREx‘𝑇)
msubffval.s 𝑆 = (mSubst‘𝑇)
msubffval.e 𝐸 = (mEx‘𝑇)
msubffval.o 𝑂 = (mRSubst‘𝑇)
Assertion
Ref Expression
msubval ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ((𝑆𝐹)‘𝑋) = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)

Proof of Theorem msubval
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 msubffval.v . . . 4 𝑉 = (mVR‘𝑇)
2 msubffval.r . . . 4 𝑅 = (mREx‘𝑇)
3 msubffval.s . . . 4 𝑆 = (mSubst‘𝑇)
4 msubffval.e . . . 4 𝐸 = (mEx‘𝑇)
5 msubffval.o . . . 4 𝑂 = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubfval 35556 . . 3 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
763adant3 1132 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
8 simpr 484 . . . 4 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
98fveq2d 6826 . . 3 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → (1st𝑒) = (1st𝑋))
108fveq2d 6826 . . . 4 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → (2nd𝑒) = (2nd𝑋))
1110fveq2d 6826 . . 3 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → ((𝑂𝐹)‘(2nd𝑒)) = ((𝑂𝐹)‘(2nd𝑋)))
129, 11opeq12d 4833 . 2 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩ = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)
13 simp3 1138 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → 𝑋𝐸)
14 opex 5404 . . 3 ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩ ∈ V
1514a1i 11 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩ ∈ V)
167, 12, 13, 15fvmptd 6936 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ((𝑆𝐹)‘𝑋) = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  cop 4582  cmpt 5172  wf 6477  cfv 6481  1st c1st 7919  2nd c2nd 7920  mVRcmvar 35493  mRExcmrex 35498  mExcmex 35499  mRSubstcmrsub 35502  mSubstcmsub 35503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-pm 8753  df-msub 35523
This theorem is referenced by:  msubrsub  35558  msubty  35559  msubff1  35588
  Copyright terms: Public domain W3C validator