Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubval Structured version   Visualization version   GIF version

Theorem msubval 35512
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v 𝑉 = (mVR‘𝑇)
msubffval.r 𝑅 = (mREx‘𝑇)
msubffval.s 𝑆 = (mSubst‘𝑇)
msubffval.e 𝐸 = (mEx‘𝑇)
msubffval.o 𝑂 = (mRSubst‘𝑇)
Assertion
Ref Expression
msubval ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ((𝑆𝐹)‘𝑋) = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)

Proof of Theorem msubval
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 msubffval.v . . . 4 𝑉 = (mVR‘𝑇)
2 msubffval.r . . . 4 𝑅 = (mREx‘𝑇)
3 msubffval.s . . . 4 𝑆 = (mSubst‘𝑇)
4 msubffval.e . . . 4 𝐸 = (mEx‘𝑇)
5 msubffval.o . . . 4 𝑂 = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubfval 35511 . . 3 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
763adant3 1132 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
8 simpr 484 . . . 4 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
98fveq2d 6862 . . 3 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → (1st𝑒) = (1st𝑋))
108fveq2d 6862 . . . 4 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → (2nd𝑒) = (2nd𝑋))
1110fveq2d 6862 . . 3 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → ((𝑂𝐹)‘(2nd𝑒)) = ((𝑂𝐹)‘(2nd𝑋)))
129, 11opeq12d 4845 . 2 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩ = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)
13 simp3 1138 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → 𝑋𝐸)
14 opex 5424 . . 3 ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩ ∈ V
1514a1i 11 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩ ∈ V)
167, 12, 13, 15fvmptd 6975 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ((𝑆𝐹)‘𝑋) = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  cop 4595  cmpt 5188  wf 6507  cfv 6511  1st c1st 7966  2nd c2nd 7967  mVRcmvar 35448  mRExcmrex 35453  mExcmex 35454  mRSubstcmrsub 35457  mSubstcmsub 35458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-pm 8802  df-msub 35478
This theorem is referenced by:  msubrsub  35513  msubty  35514  msubff1  35543
  Copyright terms: Public domain W3C validator