Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > msubval | Structured version Visualization version GIF version |
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
msubffval.v | ⊢ 𝑉 = (mVR‘𝑇) |
msubffval.r | ⊢ 𝑅 = (mREx‘𝑇) |
msubffval.s | ⊢ 𝑆 = (mSubst‘𝑇) |
msubffval.e | ⊢ 𝐸 = (mEx‘𝑇) |
msubffval.o | ⊢ 𝑂 = (mRSubst‘𝑇) |
Ref | Expression |
---|---|
msubval | ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msubffval.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | msubffval.r | . . . 4 ⊢ 𝑅 = (mREx‘𝑇) | |
3 | msubffval.s | . . . 4 ⊢ 𝑆 = (mSubst‘𝑇) | |
4 | msubffval.e | . . . 4 ⊢ 𝐸 = (mEx‘𝑇) | |
5 | msubffval.o | . . . 4 ⊢ 𝑂 = (mRSubst‘𝑇) | |
6 | 1, 2, 3, 4, 5 | msubfval 33386 | . . 3 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) |
7 | 6 | 3adant3 1130 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) |
8 | simpr 484 | . . . 4 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋) | |
9 | 8 | fveq2d 6760 | . . 3 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → (1st ‘𝑒) = (1st ‘𝑋)) |
10 | 8 | fveq2d 6760 | . . . 4 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → (2nd ‘𝑒) = (2nd ‘𝑋)) |
11 | 10 | fveq2d 6760 | . . 3 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → ((𝑂‘𝐹)‘(2nd ‘𝑒)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) |
12 | 9, 11 | opeq12d 4809 | . 2 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉 = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
13 | simp3 1136 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → 𝑋 ∈ 𝐸) | |
14 | opex 5373 | . . 3 ⊢ 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉 ∈ V | |
15 | 14 | a1i 11 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉 ∈ V) |
16 | 7, 12, 13, 15 | fvmptd 6864 | 1 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 〈cop 4564 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 mVRcmvar 33323 mRExcmrex 33328 mExcmex 33329 mRSubstcmrsub 33332 mSubstcmsub 33333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-pm 8576 df-msub 33353 |
This theorem is referenced by: msubrsub 33388 msubty 33389 msubff1 33418 |
Copyright terms: Public domain | W3C validator |