Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubval Structured version   Visualization version   GIF version

Theorem msubval 35519
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v 𝑉 = (mVR‘𝑇)
msubffval.r 𝑅 = (mREx‘𝑇)
msubffval.s 𝑆 = (mSubst‘𝑇)
msubffval.e 𝐸 = (mEx‘𝑇)
msubffval.o 𝑂 = (mRSubst‘𝑇)
Assertion
Ref Expression
msubval ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ((𝑆𝐹)‘𝑋) = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)

Proof of Theorem msubval
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 msubffval.v . . . 4 𝑉 = (mVR‘𝑇)
2 msubffval.r . . . 4 𝑅 = (mREx‘𝑇)
3 msubffval.s . . . 4 𝑆 = (mSubst‘𝑇)
4 msubffval.e . . . 4 𝐸 = (mEx‘𝑇)
5 msubffval.o . . . 4 𝑂 = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubfval 35518 . . 3 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
763adant3 1132 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
8 simpr 484 . . . 4 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
98fveq2d 6865 . . 3 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → (1st𝑒) = (1st𝑋))
108fveq2d 6865 . . . 4 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → (2nd𝑒) = (2nd𝑋))
1110fveq2d 6865 . . 3 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → ((𝑂𝐹)‘(2nd𝑒)) = ((𝑂𝐹)‘(2nd𝑋)))
129, 11opeq12d 4848 . 2 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) ∧ 𝑒 = 𝑋) → ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩ = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)
13 simp3 1138 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → 𝑋𝐸)
14 opex 5427 . . 3 ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩ ∈ V
1514a1i 11 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩ ∈ V)
167, 12, 13, 15fvmptd 6978 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐸) → ((𝑆𝐹)‘𝑋) = ⟨(1st𝑋), ((𝑂𝐹)‘(2nd𝑋))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  cop 4598  cmpt 5191  wf 6510  cfv 6514  1st c1st 7969  2nd c2nd 7970  mVRcmvar 35455  mRExcmrex 35460  mExcmex 35461  mRSubstcmrsub 35464  mSubstcmsub 35465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-pm 8805  df-msub 35485
This theorem is referenced by:  msubrsub  35520  msubty  35521  msubff1  35550
  Copyright terms: Public domain W3C validator