![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > msubval | Structured version Visualization version GIF version |
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
msubffval.v | β’ π = (mVRβπ) |
msubffval.r | β’ π = (mRExβπ) |
msubffval.s | β’ π = (mSubstβπ) |
msubffval.e | β’ πΈ = (mExβπ) |
msubffval.o | β’ π = (mRSubstβπ) |
Ref | Expression |
---|---|
msubval | β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β ((πβπΉ)βπ) = β¨(1st βπ), ((πβπΉ)β(2nd βπ))β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msubffval.v | . . . 4 β’ π = (mVRβπ) | |
2 | msubffval.r | . . . 4 β’ π = (mRExβπ) | |
3 | msubffval.s | . . . 4 β’ π = (mSubstβπ) | |
4 | msubffval.e | . . . 4 β’ πΈ = (mExβπ) | |
5 | msubffval.o | . . . 4 β’ π = (mRSubstβπ) | |
6 | 1, 2, 3, 4, 5 | msubfval 34510 | . . 3 β’ ((πΉ:π΄βΆπ β§ π΄ β π) β (πβπΉ) = (π β πΈ β¦ β¨(1st βπ), ((πβπΉ)β(2nd βπ))β©)) |
7 | 6 | 3adant3 1132 | . 2 β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β (πβπΉ) = (π β πΈ β¦ β¨(1st βπ), ((πβπΉ)β(2nd βπ))β©)) |
8 | simpr 485 | . . . 4 β’ (((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β§ π = π) β π = π) | |
9 | 8 | fveq2d 6895 | . . 3 β’ (((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β§ π = π) β (1st βπ) = (1st βπ)) |
10 | 8 | fveq2d 6895 | . . . 4 β’ (((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β§ π = π) β (2nd βπ) = (2nd βπ)) |
11 | 10 | fveq2d 6895 | . . 3 β’ (((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β§ π = π) β ((πβπΉ)β(2nd βπ)) = ((πβπΉ)β(2nd βπ))) |
12 | 9, 11 | opeq12d 4881 | . 2 β’ (((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β§ π = π) β β¨(1st βπ), ((πβπΉ)β(2nd βπ))β© = β¨(1st βπ), ((πβπΉ)β(2nd βπ))β©) |
13 | simp3 1138 | . 2 β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β π β πΈ) | |
14 | opex 5464 | . . 3 β’ β¨(1st βπ), ((πβπΉ)β(2nd βπ))β© β V | |
15 | 14 | a1i 11 | . 2 β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β β¨(1st βπ), ((πβπΉ)β(2nd βπ))β© β V) |
16 | 7, 12, 13, 15 | fvmptd 7005 | 1 β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β πΈ) β ((πβπΉ)βπ) = β¨(1st βπ), ((πβπΉ)β(2nd βπ))β©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3948 β¨cop 4634 β¦ cmpt 5231 βΆwf 6539 βcfv 6543 1st c1st 7972 2nd c2nd 7973 mVRcmvar 34447 mRExcmrex 34452 mExcmex 34453 mRSubstcmrsub 34456 mSubstcmsub 34457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-pm 8822 df-msub 34477 |
This theorem is referenced by: msubrsub 34512 msubty 34513 msubff1 34542 |
Copyright terms: Public domain | W3C validator |