| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msubval | Structured version Visualization version GIF version | ||
| Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| msubffval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| msubffval.r | ⊢ 𝑅 = (mREx‘𝑇) |
| msubffval.s | ⊢ 𝑆 = (mSubst‘𝑇) |
| msubffval.e | ⊢ 𝐸 = (mEx‘𝑇) |
| msubffval.o | ⊢ 𝑂 = (mRSubst‘𝑇) |
| Ref | Expression |
|---|---|
| msubval | ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msubffval.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 2 | msubffval.r | . . . 4 ⊢ 𝑅 = (mREx‘𝑇) | |
| 3 | msubffval.s | . . . 4 ⊢ 𝑆 = (mSubst‘𝑇) | |
| 4 | msubffval.e | . . . 4 ⊢ 𝐸 = (mEx‘𝑇) | |
| 5 | msubffval.o | . . . 4 ⊢ 𝑂 = (mRSubst‘𝑇) | |
| 6 | 1, 2, 3, 4, 5 | msubfval 35518 | . . 3 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) |
| 7 | 6 | 3adant3 1132 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) |
| 8 | simpr 484 | . . . 4 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋) | |
| 9 | 8 | fveq2d 6865 | . . 3 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → (1st ‘𝑒) = (1st ‘𝑋)) |
| 10 | 8 | fveq2d 6865 | . . . 4 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → (2nd ‘𝑒) = (2nd ‘𝑋)) |
| 11 | 10 | fveq2d 6865 | . . 3 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → ((𝑂‘𝐹)‘(2nd ‘𝑒)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) |
| 12 | 9, 11 | opeq12d 4848 | . 2 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) ∧ 𝑒 = 𝑋) → 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉 = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
| 13 | simp3 1138 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → 𝑋 ∈ 𝐸) | |
| 14 | opex 5427 | . . 3 ⊢ 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉 ∈ V | |
| 15 | 14 | a1i 11 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉 ∈ V) |
| 16 | 7, 12, 13, 15 | fvmptd 6978 | 1 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 〈cop 4598 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 mVRcmvar 35455 mRExcmrex 35460 mExcmex 35461 mRSubstcmrsub 35464 mSubstcmsub 35465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pm 8805 df-msub 35485 |
| This theorem is referenced by: msubrsub 35520 msubty 35521 msubff1 35550 |
| Copyright terms: Public domain | W3C validator |