![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > msubty | Structured version Visualization version GIF version |
Description: The type of a substituted expression is the same as the original type. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
msubffval.v | ⊢ 𝑉 = (mVR‘𝑇) |
msubffval.r | ⊢ 𝑅 = (mREx‘𝑇) |
msubffval.s | ⊢ 𝑆 = (mSubst‘𝑇) |
msubffval.e | ⊢ 𝐸 = (mEx‘𝑇) |
Ref | Expression |
---|---|
msubty | ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (1st ‘((𝑆‘𝐹)‘𝑋)) = (1st ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msubffval.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | msubffval.r | . . 3 ⊢ 𝑅 = (mREx‘𝑇) | |
3 | msubffval.s | . . 3 ⊢ 𝑆 = (mSubst‘𝑇) | |
4 | msubffval.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
5 | eqid 2740 | . . 3 ⊢ (mRSubst‘𝑇) = (mRSubst‘𝑇) | |
6 | 1, 2, 3, 4, 5 | msubval 35485 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), (((mRSubst‘𝑇)‘𝐹)‘(2nd ‘𝑋))〉) |
7 | fvex 6928 | . . 3 ⊢ (1st ‘𝑋) ∈ V | |
8 | fvex 6928 | . . 3 ⊢ (((mRSubst‘𝑇)‘𝐹)‘(2nd ‘𝑋)) ∈ V | |
9 | 7, 8 | op1std 8034 | . 2 ⊢ (((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), (((mRSubst‘𝑇)‘𝐹)‘(2nd ‘𝑋))〉 → (1st ‘((𝑆‘𝐹)‘𝑋)) = (1st ‘𝑋)) |
10 | 6, 9 | syl 17 | 1 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (1st ‘((𝑆‘𝐹)‘𝑋)) = (1st ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 〈cop 4654 ⟶wf 6564 ‘cfv 6568 1st c1st 8022 2nd c2nd 8023 mVRcmvar 35421 mRExcmrex 35426 mExcmex 35427 mRSubstcmrsub 35430 mSubstcmsub 35431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-ov 7446 df-oprab 7447 df-mpo 7448 df-1st 8024 df-pm 8881 df-msub 35451 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |