Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubty Structured version   Visualization version   GIF version

Theorem msubty 34513
Description: The type of a substituted expression is the same as the original type. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v 𝑉 = (mVRβ€˜π‘‡)
msubffval.r 𝑅 = (mRExβ€˜π‘‡)
msubffval.s 𝑆 = (mSubstβ€˜π‘‡)
msubffval.e 𝐸 = (mExβ€˜π‘‡)
Assertion
Ref Expression
msubty ((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉 ∧ 𝑋 ∈ 𝐸) β†’ (1st β€˜((π‘†β€˜πΉ)β€˜π‘‹)) = (1st β€˜π‘‹))

Proof of Theorem msubty
StepHypRef Expression
1 msubffval.v . . 3 𝑉 = (mVRβ€˜π‘‡)
2 msubffval.r . . 3 𝑅 = (mRExβ€˜π‘‡)
3 msubffval.s . . 3 𝑆 = (mSubstβ€˜π‘‡)
4 msubffval.e . . 3 𝐸 = (mExβ€˜π‘‡)
5 eqid 2732 . . 3 (mRSubstβ€˜π‘‡) = (mRSubstβ€˜π‘‡)
61, 2, 3, 4, 5msubval 34511 . 2 ((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉 ∧ 𝑋 ∈ 𝐸) β†’ ((π‘†β€˜πΉ)β€˜π‘‹) = ⟨(1st β€˜π‘‹), (((mRSubstβ€˜π‘‡)β€˜πΉ)β€˜(2nd β€˜π‘‹))⟩)
7 fvex 6904 . . 3 (1st β€˜π‘‹) ∈ V
8 fvex 6904 . . 3 (((mRSubstβ€˜π‘‡)β€˜πΉ)β€˜(2nd β€˜π‘‹)) ∈ V
97, 8op1std 7984 . 2 (((π‘†β€˜πΉ)β€˜π‘‹) = ⟨(1st β€˜π‘‹), (((mRSubstβ€˜π‘‡)β€˜πΉ)β€˜(2nd β€˜π‘‹))⟩ β†’ (1st β€˜((π‘†β€˜πΉ)β€˜π‘‹)) = (1st β€˜π‘‹))
106, 9syl 17 1 ((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉 ∧ 𝑋 ∈ 𝐸) β†’ (1st β€˜((π‘†β€˜πΉ)β€˜π‘‹)) = (1st β€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  βŸ¨cop 4634  βŸΆwf 6539  β€˜cfv 6543  1st c1st 7972  2nd c2nd 7973  mVRcmvar 34447  mRExcmrex 34452  mExcmex 34453  mRSubstcmrsub 34456  mSubstcmsub 34457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-pm 8822  df-msub 34477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator