| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mulgt0con1dlem | Structured version Visualization version GIF version | ||
| Description: Lemma for mulgt0con1d 42465. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.) |
| Ref | Expression |
|---|---|
| mulgt0con1dlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| mulgt0con1dlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mulgt0con1dlem.1 | ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) |
| mulgt0con1dlem.2 | ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) |
| Ref | Expression |
|---|---|
| mulgt0con1dlem | ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgt0con1dlem.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | 0red 11184 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 3 | 1, 2 | lttrid 11319 | . 2 ⊢ (𝜑 → (𝐵 < 0 ↔ ¬ (𝐵 = 0 ∨ 0 < 𝐵))) |
| 4 | mulgt0con1dlem.2 | . . . . 5 ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) | |
| 5 | mulgt0con1dlem.1 | . . . . 5 ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) | |
| 6 | 4, 5 | orim12d 966 | . . . 4 ⊢ (𝜑 → ((𝐴 = 0 ∨ 0 < 𝐴) → (𝐵 = 0 ∨ 0 < 𝐵))) |
| 7 | 6 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → ¬ (𝐴 = 0 ∨ 0 < 𝐴))) |
| 8 | mulgt0con1dlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | 8, 2 | lttrid 11319 | . . 3 ⊢ (𝜑 → (𝐴 < 0 ↔ ¬ (𝐴 = 0 ∨ 0 < 𝐴))) |
| 10 | 7, 9 | sylibrd 259 | . 2 ⊢ (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → 𝐴 < 0)) |
| 11 | 3, 10 | sylbid 240 | 1 ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 0cc0 11075 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 ax-pre-lttri 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 |
| This theorem is referenced by: mulgt0con1d 42465 mulgt0con2d 42466 |
| Copyright terms: Public domain | W3C validator |