![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulgt0con1dlem | Structured version Visualization version GIF version |
Description: Lemma for mulgt0con1d 42434. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.) |
Ref | Expression |
---|---|
mulgt0con1dlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
mulgt0con1dlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
mulgt0con1dlem.1 | ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) |
mulgt0con1dlem.2 | ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) |
Ref | Expression |
---|---|
mulgt0con1dlem | ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgt0con1dlem.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | 0red 11293 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
3 | 1, 2 | lttrid 11428 | . 2 ⊢ (𝜑 → (𝐵 < 0 ↔ ¬ (𝐵 = 0 ∨ 0 < 𝐵))) |
4 | mulgt0con1dlem.2 | . . . . 5 ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) | |
5 | mulgt0con1dlem.1 | . . . . 5 ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) | |
6 | 4, 5 | orim12d 965 | . . . 4 ⊢ (𝜑 → ((𝐴 = 0 ∨ 0 < 𝐴) → (𝐵 = 0 ∨ 0 < 𝐵))) |
7 | 6 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → ¬ (𝐴 = 0 ∨ 0 < 𝐴))) |
8 | mulgt0con1dlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
9 | 8, 2 | lttrid 11428 | . . 3 ⊢ (𝜑 → (𝐴 < 0 ↔ ¬ (𝐴 = 0 ∨ 0 < 𝐴))) |
10 | 7, 9 | sylibrd 259 | . 2 ⊢ (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → 𝐴 < 0)) |
11 | 3, 10 | sylbid 240 | 1 ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: mulgt0con1d 42434 mulgt0con2d 42435 |
Copyright terms: Public domain | W3C validator |