Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulgt0con1dlem Structured version   Visualization version   GIF version

Theorem mulgt0con1dlem 42464
Description: Lemma for mulgt0con1d 42465. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.)
Hypotheses
Ref Expression
mulgt0con1dlem.a (𝜑𝐴 ∈ ℝ)
mulgt0con1dlem.b (𝜑𝐵 ∈ ℝ)
mulgt0con1dlem.1 (𝜑 → (0 < 𝐴 → 0 < 𝐵))
mulgt0con1dlem.2 (𝜑 → (𝐴 = 0 → 𝐵 = 0))
Assertion
Ref Expression
mulgt0con1dlem (𝜑 → (𝐵 < 0 → 𝐴 < 0))

Proof of Theorem mulgt0con1dlem
StepHypRef Expression
1 mulgt0con1dlem.b . . 3 (𝜑𝐵 ∈ ℝ)
2 0red 11184 . . 3 (𝜑 → 0 ∈ ℝ)
31, 2lttrid 11319 . 2 (𝜑 → (𝐵 < 0 ↔ ¬ (𝐵 = 0 ∨ 0 < 𝐵)))
4 mulgt0con1dlem.2 . . . . 5 (𝜑 → (𝐴 = 0 → 𝐵 = 0))
5 mulgt0con1dlem.1 . . . . 5 (𝜑 → (0 < 𝐴 → 0 < 𝐵))
64, 5orim12d 966 . . . 4 (𝜑 → ((𝐴 = 0 ∨ 0 < 𝐴) → (𝐵 = 0 ∨ 0 < 𝐵)))
76con3d 152 . . 3 (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → ¬ (𝐴 = 0 ∨ 0 < 𝐴)))
8 mulgt0con1dlem.a . . . 4 (𝜑𝐴 ∈ ℝ)
98, 2lttrid 11319 . . 3 (𝜑 → (𝐴 < 0 ↔ ¬ (𝐴 = 0 ∨ 0 < 𝐴)))
107, 9sylibrd 259 . 2 (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → 𝐴 < 0))
113, 10sylbid 240 1 (𝜑 → (𝐵 < 0 → 𝐴 < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1540  wcel 2109   class class class wbr 5110  cr 11074  0cc0 11075   < clt 11215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-addrcl 11136  ax-rnegex 11146  ax-cnre 11148  ax-pre-lttri 11149
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220
This theorem is referenced by:  mulgt0con1d  42465  mulgt0con2d  42466
  Copyright terms: Public domain W3C validator