Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulgt0con1dlem Structured version   Visualization version   GIF version

Theorem mulgt0con1dlem 42445
Description: Lemma for mulgt0con1d 42446. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.)
Hypotheses
Ref Expression
mulgt0con1dlem.a (𝜑𝐴 ∈ ℝ)
mulgt0con1dlem.b (𝜑𝐵 ∈ ℝ)
mulgt0con1dlem.1 (𝜑 → (0 < 𝐴 → 0 < 𝐵))
mulgt0con1dlem.2 (𝜑 → (𝐴 = 0 → 𝐵 = 0))
Assertion
Ref Expression
mulgt0con1dlem (𝜑 → (𝐵 < 0 → 𝐴 < 0))

Proof of Theorem mulgt0con1dlem
StepHypRef Expression
1 mulgt0con1dlem.b . . 3 (𝜑𝐵 ∈ ℝ)
2 0red 11137 . . 3 (𝜑 → 0 ∈ ℝ)
31, 2lttrid 11272 . 2 (𝜑 → (𝐵 < 0 ↔ ¬ (𝐵 = 0 ∨ 0 < 𝐵)))
4 mulgt0con1dlem.2 . . . . 5 (𝜑 → (𝐴 = 0 → 𝐵 = 0))
5 mulgt0con1dlem.1 . . . . 5 (𝜑 → (0 < 𝐴 → 0 < 𝐵))
64, 5orim12d 966 . . . 4 (𝜑 → ((𝐴 = 0 ∨ 0 < 𝐴) → (𝐵 = 0 ∨ 0 < 𝐵)))
76con3d 152 . . 3 (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → ¬ (𝐴 = 0 ∨ 0 < 𝐴)))
8 mulgt0con1dlem.a . . . 4 (𝜑𝐴 ∈ ℝ)
98, 2lttrid 11272 . . 3 (𝜑 → (𝐴 < 0 ↔ ¬ (𝐴 = 0 ∨ 0 < 𝐴)))
107, 9sylibrd 259 . 2 (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → 𝐴 < 0))
113, 10sylbid 240 1 (𝜑 → (𝐵 < 0 → 𝐴 < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1540  wcel 2109   class class class wbr 5095  cr 11027  0cc0 11028   < clt 11168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-addrcl 11089  ax-rnegex 11099  ax-cnre 11101  ax-pre-lttri 11102
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173
This theorem is referenced by:  mulgt0con1d  42446  mulgt0con2d  42447
  Copyright terms: Public domain W3C validator