| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mulgt0con1dlem | Structured version Visualization version GIF version | ||
| Description: Lemma for mulgt0con1d 42509. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.) |
| Ref | Expression |
|---|---|
| mulgt0con1dlem.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| mulgt0con1dlem.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mulgt0con1dlem.1 | ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) |
| mulgt0con1dlem.2 | ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) |
| Ref | Expression |
|---|---|
| mulgt0con1dlem | ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgt0con1dlem.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | 0red 11115 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 3 | 1, 2 | lttrid 11251 | . 2 ⊢ (𝜑 → (𝐵 < 0 ↔ ¬ (𝐵 = 0 ∨ 0 < 𝐵))) |
| 4 | mulgt0con1dlem.2 | . . . . 5 ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) | |
| 5 | mulgt0con1dlem.1 | . . . . 5 ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) | |
| 6 | 4, 5 | orim12d 966 | . . . 4 ⊢ (𝜑 → ((𝐴 = 0 ∨ 0 < 𝐴) → (𝐵 = 0 ∨ 0 < 𝐵))) |
| 7 | 6 | con3d 152 | . . 3 ⊢ (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → ¬ (𝐴 = 0 ∨ 0 < 𝐴))) |
| 8 | mulgt0con1dlem.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | 8, 2 | lttrid 11251 | . . 3 ⊢ (𝜑 → (𝐴 < 0 ↔ ¬ (𝐴 = 0 ∨ 0 < 𝐴))) |
| 10 | 7, 9 | sylibrd 259 | . 2 ⊢ (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → 𝐴 < 0)) |
| 11 | 3, 10 | sylbid 240 | 1 ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ℝcr 11005 0cc0 11006 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 |
| This theorem is referenced by: mulgt0con1d 42509 mulgt0con2d 42510 |
| Copyright terms: Public domain | W3C validator |