Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulgt0con1dlem Structured version   Visualization version   GIF version

Theorem mulgt0con1dlem 42457
Description: Lemma for mulgt0con1d 42458. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.)
Hypotheses
Ref Expression
mulgt0con1dlem.a (𝜑𝐴 ∈ ℝ)
mulgt0con1dlem.b (𝜑𝐵 ∈ ℝ)
mulgt0con1dlem.1 (𝜑 → (0 < 𝐴 → 0 < 𝐵))
mulgt0con1dlem.2 (𝜑 → (𝐴 = 0 → 𝐵 = 0))
Assertion
Ref Expression
mulgt0con1dlem (𝜑 → (𝐵 < 0 → 𝐴 < 0))

Proof of Theorem mulgt0con1dlem
StepHypRef Expression
1 mulgt0con1dlem.b . . 3 (𝜑𝐵 ∈ ℝ)
2 0red 11177 . . 3 (𝜑 → 0 ∈ ℝ)
31, 2lttrid 11312 . 2 (𝜑 → (𝐵 < 0 ↔ ¬ (𝐵 = 0 ∨ 0 < 𝐵)))
4 mulgt0con1dlem.2 . . . . 5 (𝜑 → (𝐴 = 0 → 𝐵 = 0))
5 mulgt0con1dlem.1 . . . . 5 (𝜑 → (0 < 𝐴 → 0 < 𝐵))
64, 5orim12d 966 . . . 4 (𝜑 → ((𝐴 = 0 ∨ 0 < 𝐴) → (𝐵 = 0 ∨ 0 < 𝐵)))
76con3d 152 . . 3 (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → ¬ (𝐴 = 0 ∨ 0 < 𝐴)))
8 mulgt0con1dlem.a . . . 4 (𝜑𝐴 ∈ ℝ)
98, 2lttrid 11312 . . 3 (𝜑 → (𝐴 < 0 ↔ ¬ (𝐴 = 0 ∨ 0 < 𝐴)))
107, 9sylibrd 259 . 2 (𝜑 → (¬ (𝐵 = 0 ∨ 0 < 𝐵) → 𝐴 < 0))
113, 10sylbid 240 1 (𝜑 → (𝐵 < 0 → 𝐴 < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1540  wcel 2109   class class class wbr 5107  cr 11067  0cc0 11068   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-addrcl 11129  ax-rnegex 11139  ax-cnre 11141  ax-pre-lttri 11142
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213
This theorem is referenced by:  mulgt0con1d  42458  mulgt0con2d  42459
  Copyright terms: Public domain W3C validator