|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mulgt0i | Structured version Visualization version GIF version | ||
| Description: The product of two positive numbers is positive. (Contributed by NM, 16-May-1999.) | 
| Ref | Expression | 
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ | 
| lt.2 | ⊢ 𝐵 ∈ ℝ | 
| Ref | Expression | 
|---|---|
| mulgt0i | ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | axmulgt0 11336 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 class class class wbr 5142 (class class class)co 7432 ℝcr 11155 0cc0 11156 · cmul 11161 < clt 11296 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-addrcl 11217 ax-mulrcl 11219 ax-rnegex 11227 ax-cnre 11229 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-ltxr 11301 | 
| This theorem is referenced by: mulgt0ii 11395 recgt0ii 12175 | 
| Copyright terms: Public domain | W3C validator |