MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltadd2i Structured version   Visualization version   GIF version

Theorem ltadd2i 11134
Description: Addition to both sides of 'less than'. (Contributed by NM, 21-Jan-1997.) (Proof shortened by OpenAI, 25-Mar-2020.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion
Ref Expression
ltadd2i (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))

Proof of Theorem ltadd2i
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 lt.2 . 2 𝐵 ∈ ℝ
3 lt.3 . 2 𝐶 ∈ ℝ
4 ltadd2 11107 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
51, 2, 3, 4mp3an 1459 1 (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2101   class class class wbr 5077  (class class class)co 7295  cr 10898   + caddc 10902   < clt 11037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-resscn 10956  ax-addrcl 10960  ax-pre-lttri 10973  ax-pre-ltadd 10975
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-ov 7298  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-pnf 11039  df-mnf 11040  df-ltxr 11042
This theorem is referenced by:  numlt  12490  bposlem8  26467  dp2ltsuc  31188  dplti  31207  dpmul4  31216  sn-0ne2  40412
  Copyright terms: Public domain W3C validator