Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltadd2i | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than'. (Contributed by NM, 21-Jan-1997.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
lt.3 | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
ltadd2i | ⊢ (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | lt.3 | . 2 ⊢ 𝐶 ∈ ℝ | |
4 | ltadd2 11107 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) | |
5 | 1, 2, 3, 4 | mp3an 1459 | 1 ⊢ (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2101 class class class wbr 5077 (class class class)co 7295 ℝcr 10898 + caddc 10902 < clt 11037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-resscn 10956 ax-addrcl 10960 ax-pre-lttri 10973 ax-pre-ltadd 10975 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-ltxr 11042 |
This theorem is referenced by: numlt 12490 bposlem8 26467 dp2ltsuc 31188 dplti 31207 dpmul4 31216 sn-0ne2 40412 |
Copyright terms: Public domain | W3C validator |