MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0ii Structured version   Visualization version   GIF version

Theorem mulgt0ii 11368
Description: The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
mulgt0i.3 0 < 𝐴
mulgt0i.4 0 < 𝐵
Assertion
Ref Expression
mulgt0ii 0 < (𝐴 · 𝐵)

Proof of Theorem mulgt0ii
StepHypRef Expression
1 mulgt0i.3 . 2 0 < 𝐴
2 mulgt0i.4 . 2 0 < 𝐵
3 lt.1 . . 3 𝐴 ∈ ℝ
4 lt.2 . . 3 𝐵 ∈ ℝ
53, 4mulgt0i 11367 . 2 ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
61, 2, 5mp2an 692 1 0 < (𝐴 · 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108   class class class wbr 5119  (class class class)co 7405  cr 11128  0cc0 11129   · cmul 11134   < clt 11269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-addrcl 11190  ax-mulrcl 11192  ax-rnegex 11200  ax-cnre 11202  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274
This theorem is referenced by:  ef01bndlem  16202  efif1olem2  26504  efif1olem4  26506  ang180lem1  26771  ang180lem2  26772  chebbnd1lem3  27434  chebbnd1  27435  sinaover2ne0  45897  dirkercncflem4  46135  fourierdlem24  46160  fourierswlem  46259  fouriersw  46260
  Copyright terms: Public domain W3C validator