Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgt0ii | Structured version Visualization version GIF version |
Description: The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
mulgt0i.3 | ⊢ 0 < 𝐴 |
mulgt0i.4 | ⊢ 0 < 𝐵 |
Ref | Expression |
---|---|
mulgt0ii | ⊢ 0 < (𝐴 · 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgt0i.3 | . 2 ⊢ 0 < 𝐴 | |
2 | mulgt0i.4 | . 2 ⊢ 0 < 𝐵 | |
3 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
4 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
5 | 3, 4 | mulgt0i 11213 | . 2 ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)) |
6 | 1, 2, 5 | mp2an 690 | 1 ⊢ 0 < (𝐴 · 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5097 (class class class)co 7342 ℝcr 10976 0cc0 10977 · cmul 10982 < clt 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-resscn 11034 ax-1cn 11035 ax-addrcl 11038 ax-mulrcl 11040 ax-rnegex 11048 ax-cnre 11050 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-ltxr 11120 |
This theorem is referenced by: ef01bndlem 15993 efif1olem2 25805 efif1olem4 25807 ang180lem1 26065 ang180lem2 26066 chebbnd1lem3 26725 chebbnd1 26726 sinaover2ne0 43795 dirkercncflem4 44033 fourierdlem24 44058 fourierswlem 44157 fouriersw 44158 |
Copyright terms: Public domain | W3C validator |