MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0ii Structured version   Visualization version   GIF version

Theorem mulgt0ii 11314
Description: The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
mulgt0i.3 0 < 𝐴
mulgt0i.4 0 < 𝐵
Assertion
Ref Expression
mulgt0ii 0 < (𝐴 · 𝐵)

Proof of Theorem mulgt0ii
StepHypRef Expression
1 mulgt0i.3 . 2 0 < 𝐴
2 mulgt0i.4 . 2 0 < 𝐵
3 lt.1 . . 3 𝐴 ∈ ℝ
4 lt.2 . . 3 𝐵 ∈ ℝ
53, 4mulgt0i 11313 . 2 ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
61, 2, 5mp2an 692 1 0 < (𝐴 · 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2109   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075   · cmul 11080   < clt 11215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-addrcl 11136  ax-mulrcl 11138  ax-rnegex 11146  ax-cnre 11148  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220
This theorem is referenced by:  ef01bndlem  16159  efif1olem2  26459  efif1olem4  26461  ang180lem1  26726  ang180lem2  26727  chebbnd1lem3  27389  chebbnd1  27390  sinaover2ne0  45873  dirkercncflem4  46111  fourierdlem24  46136  fourierswlem  46235  fouriersw  46236
  Copyright terms: Public domain W3C validator