MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0ii Structured version   Visualization version   GIF version

Theorem mulgt0ii 11397
Description: The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
mulgt0i.3 0 < 𝐴
mulgt0i.4 0 < 𝐵
Assertion
Ref Expression
mulgt0ii 0 < (𝐴 · 𝐵)

Proof of Theorem mulgt0ii
StepHypRef Expression
1 mulgt0i.3 . 2 0 < 𝐴
2 mulgt0i.4 . 2 0 < 𝐵
3 lt.1 . . 3 𝐴 ∈ ℝ
4 lt.2 . . 3 𝐵 ∈ ℝ
53, 4mulgt0i 11396 . 2 ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
61, 2, 5mp2an 690 1 0 < (𝐴 · 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2099   class class class wbr 5153  (class class class)co 7424  cr 11157  0cc0 11158   · cmul 11163   < clt 11298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11215  ax-1cn 11216  ax-addrcl 11219  ax-mulrcl 11221  ax-rnegex 11229  ax-cnre 11231  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-ltxr 11303
This theorem is referenced by:  ef01bndlem  16186  efif1olem2  26570  efif1olem4  26572  ang180lem1  26837  ang180lem2  26838  chebbnd1lem3  27500  chebbnd1  27501  sinaover2ne0  45489  dirkercncflem4  45727  fourierdlem24  45752  fourierswlem  45851  fouriersw  45852
  Copyright terms: Public domain W3C validator