| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgt0ii | Structured version Visualization version GIF version | ||
| Description: The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| mulgt0i.3 | ⊢ 0 < 𝐴 |
| mulgt0i.4 | ⊢ 0 < 𝐵 |
| Ref | Expression |
|---|---|
| mulgt0ii | ⊢ 0 < (𝐴 · 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgt0i.3 | . 2 ⊢ 0 < 𝐴 | |
| 2 | mulgt0i.4 | . 2 ⊢ 0 < 𝐵 | |
| 3 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 4 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 5 | 3, 4 | mulgt0i 11240 | . 2 ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ 0 < (𝐴 · 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 ℝcr 11000 0cc0 11001 · cmul 11006 < clt 11141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-addrcl 11062 ax-mulrcl 11064 ax-rnegex 11072 ax-cnre 11074 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 |
| This theorem is referenced by: ef01bndlem 16088 efif1olem2 26474 efif1olem4 26476 ang180lem1 26741 ang180lem2 26742 chebbnd1lem3 27404 chebbnd1 27405 sinaover2ne0 45906 dirkercncflem4 46144 fourierdlem24 46169 fourierswlem 46268 fouriersw 46269 |
| Copyright terms: Public domain | W3C validator |