Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  neisspw Structured version   Visualization version   GIF version

Theorem neisspw 21812
 Description: The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neisspw (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)

Proof of Theorem neisspw
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5 𝑋 = 𝐽
21neii1 21811 . . . 4 ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘𝑆)) → 𝑣𝑋)
3 velpw 4502 . . . 4 (𝑣 ∈ 𝒫 𝑋𝑣𝑋)
42, 3sylibr 237 . . 3 ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘𝑆)) → 𝑣 ∈ 𝒫 𝑋)
54ex 416 . 2 (𝐽 ∈ Top → (𝑣 ∈ ((nei‘𝐽)‘𝑆) → 𝑣 ∈ 𝒫 𝑋))
65ssrdv 3900 1 (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ⊆ wss 3860  𝒫 cpw 4497  ∪ cuni 4801  ‘cfv 6339  Topctop 21598  neicnei 21802 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-top 21599  df-nei 21803 This theorem is referenced by:  hausflim  22686  flimclslem  22689  fclsfnflim  22732
 Copyright terms: Public domain W3C validator