MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neisspw Structured version   Visualization version   GIF version

Theorem neisspw 23130
Description: The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neisspw (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)

Proof of Theorem neisspw
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5 𝑋 = 𝐽
21neii1 23129 . . . 4 ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘𝑆)) → 𝑣𝑋)
3 velpw 4609 . . . 4 (𝑣 ∈ 𝒫 𝑋𝑣𝑋)
42, 3sylibr 234 . . 3 ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘𝑆)) → 𝑣 ∈ 𝒫 𝑋)
54ex 412 . 2 (𝐽 ∈ Top → (𝑣 ∈ ((nei‘𝐽)‘𝑆) → 𝑣 ∈ 𝒫 𝑋))
65ssrdv 4000 1 (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wss 3962  𝒫 cpw 4604   cuni 4911  cfv 6562  Topctop 22914  neicnei 23120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-top 22915  df-nei 23121
This theorem is referenced by:  hausflim  24004  flimclslem  24007  fclsfnflim  24050
  Copyright terms: Public domain W3C validator