![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neisspw | Structured version Visualization version GIF version |
Description: The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
neifval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
neisspw | ⊢ (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neifval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | neii1 22579 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘𝑆)) → 𝑣 ⊆ 𝑋) |
3 | velpw 4603 | . . . 4 ⊢ (𝑣 ∈ 𝒫 𝑋 ↔ 𝑣 ⊆ 𝑋) | |
4 | 2, 3 | sylibr 233 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘𝑆)) → 𝑣 ∈ 𝒫 𝑋) |
5 | 4 | ex 414 | . 2 ⊢ (𝐽 ∈ Top → (𝑣 ∈ ((nei‘𝐽)‘𝑆) → 𝑣 ∈ 𝒫 𝑋)) |
6 | 5 | ssrdv 3986 | 1 ⊢ (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⊆ wss 3946 𝒫 cpw 4598 ∪ cuni 4904 ‘cfv 6535 Topctop 22364 neicnei 22570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-top 22365 df-nei 22571 |
This theorem is referenced by: hausflim 23454 flimclslem 23457 fclsfnflim 23500 |
Copyright terms: Public domain | W3C validator |