MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neii1 Structured version   Visualization version   GIF version

Theorem neii1 23135
Description: A neighborhood is included in the topology's base set. (Contributed by NM, 12-Feb-2007.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neii1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁𝑋)

Proof of Theorem neii1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . 3 𝑋 = 𝐽
21neiss2 23130 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
31isnei 23132 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
4 simpl 482 . . . 4 ((𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)) → 𝑁𝑋)
53, 4biimtrdi 253 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑁𝑋))
65impancom 451 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑆𝑋𝑁𝑋))
72, 6mpd 15 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976   cuni 4931  cfv 6573  Topctop 22920  neicnei 23126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-nei 23127
This theorem is referenced by:  neisspw  23136  neiss  23138  opnnei  23149  neiuni  23151  topssnei  23153  innei  23154  neissex  23156  iscnp4  23292  llycmpkgen2  23579  neitx  23636  flimopn  24004  flfnei  24020  fclsneii  24046  fcfnei  24064  cnextcn  24096  limcflf  25936  cvmlift2lem1  35270  neiin  36298  neibastop2  36327  cnneiima  48596
  Copyright terms: Public domain W3C validator