MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neii2 Structured version   Visualization version   GIF version

Theorem neii2 22247
Description: Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
Assertion
Ref Expression
neii2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑆,𝑔

Proof of Theorem neii2
StepHypRef Expression
1 eqid 2738 . . 3 𝐽 = 𝐽
21neiss2 22240 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 𝐽)
31isnei 22242 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
4 simpr 485 . . . 4 ((𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
53, 4syl6bi 252 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
65impancom 452 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑆 𝐽 → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
72, 6mpd 15 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wrex 3065  wss 3887   cuni 4840  cfv 6427  Topctop 22030  neicnei 22236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-top 22031  df-nei 22237
This theorem is referenced by:  neiss  22248  ssnei  22249  ssnei2  22255  innei  22264  opnneiid  22265  neissex  22266  cnpnei  22403  hausnei2  22492  nlly2i  22615  neitx  22746  cnextcn  23206  utopreg  23392  neibastop2  34536  opnneilv  46158
  Copyright terms: Public domain W3C validator