MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiuni Structured version   Visualization version   GIF version

Theorem neiuni 21252
Description: The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
tpnei.1 𝑋 = 𝐽
Assertion
Ref Expression
neiuni ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 = ((nei‘𝐽)‘𝑆))

Proof of Theorem neiuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tpnei.1 . . . . 5 𝑋 = 𝐽
21tpnei 21251 . . . 4 (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))
32biimpa 469 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 ∈ ((nei‘𝐽)‘𝑆))
4 elssuni 4657 . . 3 (𝑋 ∈ ((nei‘𝐽)‘𝑆) → 𝑋 ((nei‘𝐽)‘𝑆))
53, 4syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 ((nei‘𝐽)‘𝑆))
61neii1 21236 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑥𝑋)
76ex 402 . . . . 5 (𝐽 ∈ Top → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥𝑋))
87adantr 473 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥𝑋))
98ralrimiv 3144 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)𝑥𝑋)
10 unissb 4659 . . 3 ( ((nei‘𝐽)‘𝑆) ⊆ 𝑋 ↔ ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)𝑥𝑋)
119, 10sylibr 226 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) ⊆ 𝑋)
125, 11eqssd 3813 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 = ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3087  wss 3767   cuni 4626  cfv 6099  Topctop 21023  neicnei 21227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-top 21024  df-nei 21228
This theorem is referenced by:  neifil  22009
  Copyright terms: Public domain W3C validator