Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nodmord | Structured version Visualization version GIF version |
Description: The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodmord | ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nodmon 33850 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
2 | eloni 6278 | . 2 ⊢ (dom 𝐴 ∈ On → Ord dom 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 dom cdm 5591 Ord word 6267 Oncon0 6268 No csur 33840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pr 5354 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-ord 6271 df-on 6272 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-no 33843 |
This theorem is referenced by: noseponlem 33864 nosepon 33865 noextend 33866 noextenddif 33868 noextendlt 33869 noextendgt 33870 nolesgn2ores 33872 nogesgn1ores 33874 fvnobday 33878 nosepssdm 33886 nosupres 33907 nosupbnd1lem1 33908 nosupbnd1lem3 33910 nosupbnd1lem5 33912 nosupbnd2lem1 33915 nosupbnd2 33916 noinfres 33922 noinfbnd1lem1 33923 noinfbnd1lem3 33925 noinfbnd1lem5 33927 noinfbnd2lem1 33930 noinfbnd2 33931 noetasuplem4 33936 noetainflem4 33940 noetalem1 33941 |
Copyright terms: Public domain | W3C validator |