![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nodmord | Structured version Visualization version GIF version |
Description: The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodmord | ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nodmon 27577 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
2 | eloni 6374 | . 2 ⊢ (dom 𝐴 ∈ On → Ord dom 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 dom cdm 5673 Ord word 6363 Oncon0 6364 No csur 27567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-ord 6367 df-on 6368 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-no 27570 |
This theorem is referenced by: noseponlem 27591 nosepon 27592 noextend 27593 noextenddif 27595 noextendlt 27596 noextendgt 27597 nolesgn2ores 27599 nogesgn1ores 27601 fvnobday 27605 nosepssdm 27613 nosupres 27634 nosupbnd1lem1 27635 nosupbnd1lem3 27637 nosupbnd1lem5 27639 nosupbnd2lem1 27642 nosupbnd2 27643 noinfres 27649 noinfbnd1lem1 27650 noinfbnd1lem3 27652 noinfbnd1lem5 27654 noinfbnd2lem1 27657 noinfbnd2 27658 noetasuplem4 27663 noetainflem4 27667 noetalem1 27668 |
Copyright terms: Public domain | W3C validator |