Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodmord Structured version   Visualization version   GIF version

Theorem nodmord 33783
Description: The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodmord (𝐴 No → Ord dom 𝐴)

Proof of Theorem nodmord
StepHypRef Expression
1 nodmon 33780 . 2 (𝐴 No → dom 𝐴 ∈ On)
2 eloni 6261 . 2 (dom 𝐴 ∈ On → Ord dom 𝐴)
31, 2syl 17 1 (𝐴 No → Ord dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  dom cdm 5580  Ord word 6250  Oncon0 6251   No csur 33770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-no 33773
This theorem is referenced by:  noseponlem  33794  nosepon  33795  noextend  33796  noextenddif  33798  noextendlt  33799  noextendgt  33800  nolesgn2ores  33802  nogesgn1ores  33804  fvnobday  33808  nosepssdm  33816  nosupres  33837  nosupbnd1lem1  33838  nosupbnd1lem3  33840  nosupbnd1lem5  33842  nosupbnd2lem1  33845  nosupbnd2  33846  noinfres  33852  noinfbnd1lem1  33853  noinfbnd1lem3  33855  noinfbnd1lem5  33857  noinfbnd2lem1  33860  noinfbnd2  33861  noetasuplem4  33866  noetainflem4  33870  noetalem1  33871
  Copyright terms: Public domain W3C validator