| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodmord | Structured version Visualization version GIF version | ||
| Description: The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodmord | ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nodmon 27631 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
| 2 | eloni 6373 | . 2 ⊢ (dom 𝐴 ∈ On → Ord dom 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 dom cdm 5665 Ord word 6362 Oncon0 6363 No csur 27620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-ord 6366 df-on 6367 df-fun 6543 df-fn 6544 df-f 6545 df-no 27623 |
| This theorem is referenced by: noseponlem 27645 nosepon 27646 noextend 27647 noextenddif 27649 noextendlt 27650 noextendgt 27651 nolesgn2ores 27653 nogesgn1ores 27655 fvnobday 27659 nosepssdm 27667 nosupres 27688 nosupbnd1lem1 27689 nosupbnd1lem3 27691 nosupbnd1lem5 27693 nosupbnd2lem1 27696 nosupbnd2 27697 noinfres 27703 noinfbnd1lem1 27704 noinfbnd1lem3 27706 noinfbnd1lem5 27708 noinfbnd2lem1 27711 noinfbnd2 27712 noetasuplem4 27717 noetainflem4 27721 noetalem1 27722 |
| Copyright terms: Public domain | W3C validator |