| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodmord | Structured version Visualization version GIF version | ||
| Description: The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodmord | ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nodmon 27569 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
| 2 | eloni 6345 | . 2 ⊢ (dom 𝐴 ∈ On → Ord dom 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 dom cdm 5641 Ord word 6334 Oncon0 6335 No csur 27558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-ord 6338 df-on 6339 df-fun 6516 df-fn 6517 df-f 6518 df-no 27561 |
| This theorem is referenced by: noseponlem 27583 nosepon 27584 noextend 27585 noextenddif 27587 noextendlt 27588 noextendgt 27589 nolesgn2ores 27591 nogesgn1ores 27593 fvnobday 27597 nosepssdm 27605 nosupres 27626 nosupbnd1lem1 27627 nosupbnd1lem3 27629 nosupbnd1lem5 27631 nosupbnd2lem1 27634 nosupbnd2 27635 noinfres 27641 noinfbnd1lem1 27642 noinfbnd1lem3 27644 noinfbnd1lem5 27646 noinfbnd2lem1 27649 noinfbnd2 27650 noetasuplem4 27655 noetainflem4 27659 noetalem1 27660 |
| Copyright terms: Public domain | W3C validator |