| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodmord | Structured version Visualization version GIF version | ||
| Description: The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodmord | ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nodmon 27560 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
| 2 | eloni 6317 | . 2 ⊢ (dom 𝐴 ∈ On → Ord dom 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 dom cdm 5619 Ord word 6306 Oncon0 6307 No csur 27549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-ord 6310 df-on 6311 df-fun 6484 df-fn 6485 df-f 6486 df-no 27552 |
| This theorem is referenced by: noseponlem 27574 nosepon 27575 noextend 27576 noextenddif 27578 noextendlt 27579 noextendgt 27580 nolesgn2ores 27582 nogesgn1ores 27584 fvnobday 27588 nosepssdm 27596 nosupres 27617 nosupbnd1lem1 27618 nosupbnd1lem3 27620 nosupbnd1lem5 27622 nosupbnd2lem1 27625 nosupbnd2 27626 noinfres 27632 noinfbnd1lem1 27633 noinfbnd1lem3 27635 noinfbnd1lem5 27637 noinfbnd2lem1 27640 noinfbnd2 27641 noetasuplem4 27646 noetainflem4 27650 noetalem1 27651 |
| Copyright terms: Public domain | W3C validator |