| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nodmord | Structured version Visualization version GIF version | ||
| Description: The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nodmord | ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nodmon 27589 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
| 2 | eloni 6316 | . 2 ⊢ (dom 𝐴 ∈ On → Ord dom 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 dom cdm 5614 Ord word 6305 Oncon0 6306 No csur 27578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-ord 6309 df-on 6310 df-fun 6483 df-fn 6484 df-f 6485 df-no 27581 |
| This theorem is referenced by: noseponlem 27603 nosepon 27604 noextend 27605 noextenddif 27607 noextendlt 27608 noextendgt 27609 nolesgn2ores 27611 nogesgn1ores 27613 fvnobday 27617 nosepssdm 27625 nosupres 27646 nosupbnd1lem1 27647 nosupbnd1lem3 27649 nosupbnd1lem5 27651 nosupbnd2lem1 27654 nosupbnd2 27655 noinfres 27661 noinfbnd1lem1 27662 noinfbnd1lem3 27664 noinfbnd1lem5 27666 noinfbnd2lem1 27669 noinfbnd2 27670 noetasuplem4 27675 noetainflem4 27679 noetalem1 27680 |
| Copyright terms: Public domain | W3C validator |