![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nodmord | Structured version Visualization version GIF version |
Description: The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodmord | ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nodmon 27710 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
2 | eloni 6396 | . 2 ⊢ (dom 𝐴 ∈ On → Ord dom 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 dom cdm 5689 Ord word 6385 Oncon0 6386 No csur 27699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-ord 6389 df-on 6390 df-fun 6565 df-fn 6566 df-f 6567 df-no 27702 |
This theorem is referenced by: noseponlem 27724 nosepon 27725 noextend 27726 noextenddif 27728 noextendlt 27729 noextendgt 27730 nolesgn2ores 27732 nogesgn1ores 27734 fvnobday 27738 nosepssdm 27746 nosupres 27767 nosupbnd1lem1 27768 nosupbnd1lem3 27770 nosupbnd1lem5 27772 nosupbnd2lem1 27775 nosupbnd2 27776 noinfres 27782 noinfbnd1lem1 27783 noinfbnd1lem3 27785 noinfbnd1lem5 27787 noinfbnd2lem1 27790 noinfbnd2 27791 noetasuplem4 27796 noetainflem4 27800 noetalem1 27801 |
Copyright terms: Public domain | W3C validator |