![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nodmord | Structured version Visualization version GIF version |
Description: The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodmord | ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nodmon 27713 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
2 | eloni 6405 | . 2 ⊢ (dom 𝐴 ∈ On → Ord dom 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 dom cdm 5700 Ord word 6394 Oncon0 6395 No csur 27702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-ord 6398 df-on 6399 df-fun 6575 df-fn 6576 df-f 6577 df-no 27705 |
This theorem is referenced by: noseponlem 27727 nosepon 27728 noextend 27729 noextenddif 27731 noextendlt 27732 noextendgt 27733 nolesgn2ores 27735 nogesgn1ores 27737 fvnobday 27741 nosepssdm 27749 nosupres 27770 nosupbnd1lem1 27771 nosupbnd1lem3 27773 nosupbnd1lem5 27775 nosupbnd2lem1 27778 nosupbnd2 27779 noinfres 27785 noinfbnd1lem1 27786 noinfbnd1lem3 27788 noinfbnd1lem5 27790 noinfbnd2lem1 27793 noinfbnd2 27794 noetasuplem4 27799 noetainflem4 27803 noetalem1 27804 |
Copyright terms: Public domain | W3C validator |