MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norn Structured version   Visualization version   GIF version

Theorem norn 27503
Description: The range of a surreal is a subset of the surreal signs. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
norn (𝐴 No → ran 𝐴 ⊆ {1o, 2o})

Proof of Theorem norn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elno 27498 . 2 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
2 frn 6715 . . 3 (𝐴:𝑥⟶{1o, 2o} → ran 𝐴 ⊆ {1o, 2o})
32rexlimivw 3143 . 2 (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → ran 𝐴 ⊆ {1o, 2o})
41, 3sylbi 216 1 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wrex 3062  wss 3941  {cpr 4623  ran crn 5668  Oncon0 6355  wf 6530  1oc1o 8455  2oc2o 8456   No csur 27492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-no 27495
This theorem is referenced by:  elno2  27506  nofv  27509  sltres  27514  noextend  27518  noextendseq  27519  nosepssdm  27538  nodenselem8  27543  nolt02olem  27546  nosupno  27555  noinfno  27570
  Copyright terms: Public domain W3C validator