| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > norn | Structured version Visualization version GIF version | ||
| Description: The range of a surreal is a subset of the surreal signs. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| norn | ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27590 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | frn 6677 | . . 3 ⊢ (𝐴:𝑥⟶{1o, 2o} → ran 𝐴 ⊆ {1o, 2o}) | |
| 3 | 2 | rexlimivw 3130 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → ran 𝐴 ⊆ {1o, 2o}) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3911 {cpr 4587 ran crn 5632 Oncon0 6320 ⟶wf 6495 1oc1o 8404 2oc2o 8405 No csur 27584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-fun 6501 df-fn 6502 df-f 6503 df-no 27587 |
| This theorem is referenced by: elno2 27599 nofv 27602 sltres 27607 noextend 27611 noextendseq 27612 nosepssdm 27631 nodenselem8 27636 nolt02olem 27639 nosupno 27648 noinfno 27663 |
| Copyright terms: Public domain | W3C validator |