MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norn Structured version   Visualization version   GIF version

Theorem norn 27570
Description: The range of a surreal is a subset of the surreal signs. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
norn (𝐴 No → ran 𝐴 ⊆ {1o, 2o})

Proof of Theorem norn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elno 27564 . 2 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
2 frn 6698 . . 3 (𝐴:𝑥⟶{1o, 2o} → ran 𝐴 ⊆ {1o, 2o})
32rexlimivw 3131 . 2 (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → ran 𝐴 ⊆ {1o, 2o})
41, 3sylbi 217 1 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wrex 3054  wss 3917  {cpr 4594  ran crn 5642  Oncon0 6335  wf 6510  1oc1o 8430  2oc2o 8431   No csur 27558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518  df-no 27561
This theorem is referenced by:  elno2  27573  nofv  27576  sltres  27581  noextend  27585  noextendseq  27586  nosepssdm  27605  nodenselem8  27610  nolt02olem  27613  nosupno  27622  noinfno  27637
  Copyright terms: Public domain W3C validator