Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > norn | Structured version Visualization version GIF version |
Description: The range of a surreal is a subset of the surreal signs. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
norn | ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elno 33849 | . 2 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
2 | frn 6607 | . . 3 ⊢ (𝐴:𝑥⟶{1o, 2o} → ran 𝐴 ⊆ {1o, 2o}) | |
3 | 2 | rexlimivw 3211 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → ran 𝐴 ⊆ {1o, 2o}) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 {cpr 4563 ran crn 5590 Oncon0 6266 ⟶wf 6429 1oc1o 8290 2oc2o 8291 No csur 33843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-no 33846 |
This theorem is referenced by: elno2 33857 nofv 33860 sltres 33865 noextend 33869 noextendseq 33870 nosepssdm 33889 nodenselem8 33894 nolt02olem 33897 nosupno 33906 noinfno 33921 |
Copyright terms: Public domain | W3C validator |