MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupdm Structured version   Visualization version   GIF version

Theorem nosupdm 27623
Description: The domain of the surreal supremum when there is no maximum. The primary point of this theorem is to change bound variable. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupdm.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupdm (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
Distinct variable groups:   𝐴,𝑔   𝐴,𝑝,𝑞,𝑢,𝑣,𝑦,𝑧   𝑢,𝑔,𝑣,𝑦   𝑞,𝑝,𝑢,𝑣,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥,𝑦,𝑧,𝑣,𝑢,𝑔,𝑞,𝑝)

Proof of Theorem nosupdm
StepHypRef Expression
1 nosupdm.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2 iffalse 4500 . . . . 5 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
31, 2eqtrid 2777 . . . 4 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
43dmeqd 5872 . . 3 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
5 iotaex 6487 . . . 4 (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ∈ V
6 eqid 2730 . . . 4 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
75, 6dmmpti 6665 . . 3 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
84, 7eqtrdi 2781 . 2 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
9 dmeq 5870 . . . . . . 7 (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝)
109eleq2d 2815 . . . . . 6 (𝑢 = 𝑝 → (𝑦 ∈ dom 𝑢𝑦 ∈ dom 𝑝))
11 breq1 5113 . . . . . . . . . 10 (𝑣 = 𝑞 → (𝑣 <s 𝑢𝑞 <s 𝑢))
1211notbid 318 . . . . . . . . 9 (𝑣 = 𝑞 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑞 <s 𝑢))
13 reseq1 5947 . . . . . . . . . 10 (𝑣 = 𝑞 → (𝑣 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))
1413eqeq2d 2741 . . . . . . . . 9 (𝑣 = 𝑞 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))
1512, 14imbi12d 344 . . . . . . . 8 (𝑣 = 𝑞 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))))
1615cbvralvw 3216 . . . . . . 7 (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑞𝐴𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))
17 breq2 5114 . . . . . . . . . 10 (𝑢 = 𝑝 → (𝑞 <s 𝑢𝑞 <s 𝑝))
1817notbid 318 . . . . . . . . 9 (𝑢 = 𝑝 → (¬ 𝑞 <s 𝑢 ↔ ¬ 𝑞 <s 𝑝))
19 reseq1 5947 . . . . . . . . . 10 (𝑢 = 𝑝 → (𝑢 ↾ suc 𝑦) = (𝑝 ↾ suc 𝑦))
2019eqeq1d 2732 . . . . . . . . 9 (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦) ↔ (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))
2118, 20imbi12d 344 . . . . . . . 8 (𝑢 = 𝑝 → ((¬ 𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))))
2221ralbidv 3157 . . . . . . 7 (𝑢 = 𝑝 → (∀𝑞𝐴𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))))
2316, 22bitrid 283 . . . . . 6 (𝑢 = 𝑝 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))))
2410, 23anbi12d 632 . . . . 5 (𝑢 = 𝑝 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑦 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))))
2524cbvrexvw 3217 . . . 4 (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑝𝐴 (𝑦 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))))
26 eleq1w 2812 . . . . . 6 (𝑦 = 𝑧 → (𝑦 ∈ dom 𝑝𝑧 ∈ dom 𝑝))
27 suceq 6403 . . . . . . . . . 10 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
2827reseq2d 5953 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑝 ↾ suc 𝑦) = (𝑝 ↾ suc 𝑧))
2927reseq2d 5953 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑞 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑧))
3028, 29eqeq12d 2746 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦) ↔ (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))
3130imbi2d 340 . . . . . . 7 (𝑦 = 𝑧 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))
3231ralbidv 3157 . . . . . 6 (𝑦 = 𝑧 → (∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))
3326, 32anbi12d 632 . . . . 5 (𝑦 = 𝑧 → ((𝑦 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))) ↔ (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))))
3433rexbidv 3158 . . . 4 (𝑦 = 𝑧 → (∃𝑝𝐴 (𝑦 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))) ↔ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))))
3525, 34bitrid 283 . . 3 (𝑦 = 𝑧 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))))
3635cbvabv 2800 . 2 {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} = {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}
378, 36eqtrdi 2781 1 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑧 ∣ ∃𝑝𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞𝐴𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  cun 3915  ifcif 4491  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  suc csuc 6337  cio 6465  cfv 6514  crio 7346  2oc2o 8431   <s cslt 27559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517
This theorem is referenced by:  nosupbnd1lem3  27629  nosupbnd1lem5  27631  nosupbnd2  27635
  Copyright terms: Public domain W3C validator