Proof of Theorem nosupdm
Step | Hyp | Ref
| Expression |
1 | | nosupdm.1 |
. . . . 5
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | | iffalse 4420 |
. . . . 5
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
3 | 1, 2 | syl5eq 2785 |
. . . 4
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
4 | 3 | dmeqd 5742 |
. . 3
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
5 | | iotaex 6313 |
. . . 4
⊢
(℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) ∈ V |
6 | | eqid 2738 |
. . . 4
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
7 | 5, 6 | dmmpti 6475 |
. . 3
⊢ dom
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} |
8 | 4, 7 | eqtrdi 2789 |
. 2
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
9 | | dmeq 5740 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝) |
10 | 9 | eleq2d 2818 |
. . . . . 6
⊢ (𝑢 = 𝑝 → (𝑦 ∈ dom 𝑢 ↔ 𝑦 ∈ dom 𝑝)) |
11 | | breq1 5030 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑞 → (𝑣 <s 𝑢 ↔ 𝑞 <s 𝑢)) |
12 | 11 | notbid 321 |
. . . . . . . . 9
⊢ (𝑣 = 𝑞 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑞 <s 𝑢)) |
13 | | reseq1 5813 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑞 → (𝑣 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) |
14 | 13 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑣 = 𝑞 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))) |
15 | 12, 14 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑣 = 𝑞 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))) |
16 | 15 | cbvralvw 3348 |
. . . . . . 7
⊢
(∀𝑣 ∈
𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))) |
17 | | breq2 5031 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑝 → (𝑞 <s 𝑢 ↔ 𝑞 <s 𝑝)) |
18 | 17 | notbid 321 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → (¬ 𝑞 <s 𝑢 ↔ ¬ 𝑞 <s 𝑝)) |
19 | | reseq1 5813 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑝 → (𝑢 ↾ suc 𝑦) = (𝑝 ↾ suc 𝑦)) |
20 | 19 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦) ↔ (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))) |
21 | 18, 20 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑢 = 𝑝 → ((¬ 𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))) |
22 | 21 | ralbidv 3109 |
. . . . . . 7
⊢ (𝑢 = 𝑝 → (∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))) |
23 | 16, 22 | syl5bb 286 |
. . . . . 6
⊢ (𝑢 = 𝑝 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))) |
24 | 10, 23 | anbi12d 634 |
. . . . 5
⊢ (𝑢 = 𝑝 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑦 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))))) |
25 | 24 | cbvrexvw 3349 |
. . . 4
⊢
(∃𝑢 ∈
𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑝 ∈ 𝐴 (𝑦 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)))) |
26 | | eleq1w 2815 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑦 ∈ dom 𝑝 ↔ 𝑧 ∈ dom 𝑝)) |
27 | | suceq 6231 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧) |
28 | 27 | reseq2d 5819 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑝 ↾ suc 𝑦) = (𝑝 ↾ suc 𝑧)) |
29 | 27 | reseq2d 5819 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑞 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑧)) |
30 | 28, 29 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → ((𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦) ↔ (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))) |
31 | 30 | imbi2d 344 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))) |
32 | 31 | ralbidv 3109 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦)) ↔ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))) |
33 | 26, 32 | anbi12d 634 |
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝑦 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))) ↔ (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))) |
34 | 33 | rexbidv 3206 |
. . . 4
⊢ (𝑦 = 𝑧 → (∃𝑝 ∈ 𝐴 (𝑦 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑦) = (𝑞 ↾ suc 𝑦))) ↔ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))) |
35 | 25, 34 | syl5bb 286 |
. . 3
⊢ (𝑦 = 𝑧 → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧))))) |
36 | 35 | cbvabv 2806 |
. 2
⊢ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} = {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))} |
37 | 8, 36 | eqtrdi 2789 |
1
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑧 ∣ ∃𝑝 ∈ 𝐴 (𝑧 ∈ dom 𝑝 ∧ ∀𝑞 ∈ 𝐴 (¬ 𝑞 <s 𝑝 → (𝑝 ↾ suc 𝑧) = (𝑞 ↾ suc 𝑧)))}) |