![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclselnel2 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in interior of the complement of a set and non-membership in the closure of the set. (Contributed by RP, 28-May-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrcls.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ntrcls.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrclselnel2 | ⊢ (𝜑 → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑆)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrcls.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
2 | ntrcls.d | . . 3 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | ntrcls.r | . . . 4 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
4 | 1, 2, 3 | ntrclsnvobr 43719 | . . 3 ⊢ (𝜑 → 𝐾𝐷𝐼) |
5 | ntrcls.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | ntrcls.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
7 | 1, 2, 4, 5, 6 | ntrclselnel1 43724 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ 𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑆)))) |
8 | 7 | con2bid 353 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑆)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∖ cdif 3944 𝒫 cpw 4607 class class class wbr 5153 ↦ cmpt 5236 ‘cfv 6554 (class class class)co 7424 ↑m cmap 8855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-map 8857 |
This theorem is referenced by: ntrclsneine0lem 43731 |
Copyright terms: Public domain | W3C validator |