![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrelmap | Structured version Visualization version GIF version |
Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
ntrrn.x | β’ π = βͺ π½ |
ntrrn.i | β’ πΌ = (intβπ½) |
Ref | Expression |
---|---|
ntrelmap | β’ (π½ β Top β πΌ β (π« π βm π« π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrrn.x | . . 3 β’ π = βͺ π½ | |
2 | ntrrn.i | . . 3 β’ πΌ = (intβπ½) | |
3 | 1, 2 | ntrf2 43330 | . 2 β’ (π½ β Top β πΌ:π« πβΆπ« π) |
4 | 1 | topopn 22729 | . . . 4 β’ (π½ β Top β π β π½) |
5 | 4 | pwexd 5367 | . . 3 β’ (π½ β Top β π« π β V) |
6 | 5, 5 | elmapd 8829 | . 2 β’ (π½ β Top β (πΌ β (π« π βm π« π) β πΌ:π« πβΆπ« π)) |
7 | 3, 6 | mpbird 257 | 1 β’ (π½ β Top β πΌ β (π« π βm π« π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3466 π« cpw 4594 βͺ cuni 4899 βΆwf 6529 βcfv 6533 (class class class)co 7401 βm cmap 8815 Topctop 22716 intcnt 22842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-map 8817 df-top 22717 df-topon 22734 df-ntr 22845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |