| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrelmap | Structured version Visualization version GIF version | ||
| Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
| ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
| Ref | Expression |
|---|---|
| ntrelmap | ⊢ (𝐽 ∈ Top → 𝐼 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrrn.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ntrrn.i | . . 3 ⊢ 𝐼 = (int‘𝐽) | |
| 3 | 1, 2 | ntrf2 44241 | . 2 ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋) |
| 4 | 1 | topopn 22822 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 5 | 4 | pwexd 5319 | . . 3 ⊢ (𝐽 ∈ Top → 𝒫 𝑋 ∈ V) |
| 6 | 5, 5 | elmapd 8770 | . 2 ⊢ (𝐽 ∈ Top → (𝐼 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋) ↔ 𝐼:𝒫 𝑋⟶𝒫 𝑋)) |
| 7 | 3, 6 | mpbird 257 | 1 ⊢ (𝐽 ∈ Top → 𝐼 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 𝒫 cpw 4549 ∪ cuni 4858 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 Topctop 22809 intcnt 22933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-top 22810 df-topon 22827 df-ntr 22936 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |