Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrf Structured version   Visualization version   GIF version

Theorem ntrf 39958
Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = 𝐽
ntrrn.i 𝐼 = (int‘𝐽)
Assertion
Ref Expression
ntrf (𝐽 ∈ Top → 𝐼:𝒫 𝑋𝐽)

Proof of Theorem ntrf
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 vpwex 5169 . . . . . 6 𝒫 𝑠 ∈ V
21inex2 5113 . . . . 5 (𝐽 ∩ 𝒫 𝑠) ∈ V
32uniex 7323 . . . 4 (𝐽 ∩ 𝒫 𝑠) ∈ V
4 eqid 2795 . . . 4 (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠))
53, 4fnmpti 6359 . . 3 (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋
6 ntrrn.i . . . . 5 𝐼 = (int‘𝐽)
7 ntrrn.x . . . . . 6 𝑋 = 𝐽
87ntrfval 21316 . . . . 5 (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)))
96, 8syl5eq 2843 . . . 4 (𝐽 ∈ Top → 𝐼 = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)))
109fneq1d 6316 . . 3 (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋))
115, 10mpbiri 259 . 2 (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋)
127, 6ntrrn 39957 . 2 (𝐽 ∈ Top → ran 𝐼𝐽)
13 df-f 6229 . 2 (𝐼:𝒫 𝑋𝐽 ↔ (𝐼 Fn 𝒫 𝑋 ∧ ran 𝐼𝐽))
1411, 12, 13sylanbrc 583 1 (𝐽 ∈ Top → 𝐼:𝒫 𝑋𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  wcel 2081  cin 3858  wss 3859  𝒫 cpw 4453   cuni 4745  cmpt 5041  ran crn 5444   Fn wfn 6220  wf 6221  cfv 6225  Topctop 21185  intcnt 21309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-top 21186  df-ntr 21312
This theorem is referenced by:  ntrf2  39959
  Copyright terms: Public domain W3C validator