![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrf | Structured version Visualization version GIF version |
Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
ntrrn.x | β’ π = βͺ π½ |
ntrrn.i | β’ πΌ = (intβπ½) |
Ref | Expression |
---|---|
ntrf | β’ (π½ β Top β πΌ:π« πβΆπ½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 5375 | . . . . . 6 β’ π« π β V | |
2 | 1 | inex2 5318 | . . . . 5 β’ (π½ β© π« π ) β V |
3 | 2 | uniex 7735 | . . . 4 β’ βͺ (π½ β© π« π ) β V |
4 | eqid 2731 | . . . 4 β’ (π β π« π β¦ βͺ (π½ β© π« π )) = (π β π« π β¦ βͺ (π½ β© π« π )) | |
5 | 3, 4 | fnmpti 6693 | . . 3 β’ (π β π« π β¦ βͺ (π½ β© π« π )) Fn π« π |
6 | ntrrn.i | . . . . 5 β’ πΌ = (intβπ½) | |
7 | ntrrn.x | . . . . . 6 β’ π = βͺ π½ | |
8 | 7 | ntrfval 22761 | . . . . 5 β’ (π½ β Top β (intβπ½) = (π β π« π β¦ βͺ (π½ β© π« π ))) |
9 | 6, 8 | eqtrid 2783 | . . . 4 β’ (π½ β Top β πΌ = (π β π« π β¦ βͺ (π½ β© π« π ))) |
10 | 9 | fneq1d 6642 | . . 3 β’ (π½ β Top β (πΌ Fn π« π β (π β π« π β¦ βͺ (π½ β© π« π )) Fn π« π)) |
11 | 5, 10 | mpbiri 258 | . 2 β’ (π½ β Top β πΌ Fn π« π) |
12 | 7, 6 | ntrrn 43188 | . 2 β’ (π½ β Top β ran πΌ β π½) |
13 | df-f 6547 | . 2 β’ (πΌ:π« πβΆπ½ β (πΌ Fn π« π β§ ran πΌ β π½)) | |
14 | 11, 12, 13 | sylanbrc 582 | 1 β’ (π½ β Top β πΌ:π« πβΆπ½) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β© cin 3947 β wss 3948 π« cpw 4602 βͺ cuni 4908 β¦ cmpt 5231 ran crn 5677 Fn wfn 6538 βΆwf 6539 βcfv 6543 Topctop 22628 intcnt 22754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-top 22629 df-ntr 22757 |
This theorem is referenced by: ntrf2 43190 |
Copyright terms: Public domain | W3C validator |