| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrf | Structured version Visualization version GIF version | ||
| Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
| ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
| Ref | Expression |
|---|---|
| ntrf | ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vpwex 5313 | . . . . . 6 ⊢ 𝒫 𝑠 ∈ V | |
| 2 | 1 | inex2 5254 | . . . . 5 ⊢ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 3 | 2 | uniex 7674 | . . . 4 ⊢ ∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 4 | eqid 2731 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) | |
| 5 | 3, 4 | fnmpti 6624 | . . 3 ⊢ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋 |
| 6 | ntrrn.i | . . . . 5 ⊢ 𝐼 = (int‘𝐽) | |
| 7 | ntrrn.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 8 | 7 | ntrfval 22939 | . . . . 5 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
| 9 | 6, 8 | eqtrid 2778 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐼 = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
| 10 | 9 | fneq1d 6574 | . . 3 ⊢ (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)) |
| 11 | 5, 10 | mpbiri 258 | . 2 ⊢ (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋) |
| 12 | 7, 6 | ntrrn 44163 | . 2 ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
| 13 | df-f 6485 | . 2 ⊢ (𝐼:𝒫 𝑋⟶𝐽 ↔ (𝐼 Fn 𝒫 𝑋 ∧ ran 𝐼 ⊆ 𝐽)) | |
| 14 | 11, 12, 13 | sylanbrc 583 | 1 ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 ↦ cmpt 5170 ran crn 5615 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 Topctop 22808 intcnt 22932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22809 df-ntr 22935 |
| This theorem is referenced by: ntrf2 44165 |
| Copyright terms: Public domain | W3C validator |