| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrf | Structured version Visualization version GIF version | ||
| Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
| ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
| Ref | Expression |
|---|---|
| ntrf | ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vpwex 5327 | . . . . . 6 ⊢ 𝒫 𝑠 ∈ V | |
| 2 | 1 | inex2 5268 | . . . . 5 ⊢ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 3 | 2 | uniex 7697 | . . . 4 ⊢ ∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 4 | eqid 2729 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) | |
| 5 | 3, 4 | fnmpti 6643 | . . 3 ⊢ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋 |
| 6 | ntrrn.i | . . . . 5 ⊢ 𝐼 = (int‘𝐽) | |
| 7 | ntrrn.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 8 | 7 | ntrfval 22887 | . . . . 5 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
| 9 | 6, 8 | eqtrid 2776 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐼 = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
| 10 | 9 | fneq1d 6593 | . . 3 ⊢ (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)) |
| 11 | 5, 10 | mpbiri 258 | . 2 ⊢ (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋) |
| 12 | 7, 6 | ntrrn 44084 | . 2 ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
| 13 | df-f 6503 | . 2 ⊢ (𝐼:𝒫 𝑋⟶𝐽 ↔ (𝐼 Fn 𝒫 𝑋 ∧ ran 𝐼 ⊆ 𝐽)) | |
| 14 | 11, 12, 13 | sylanbrc 583 | 1 ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 ↦ cmpt 5183 ran crn 5632 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 Topctop 22756 intcnt 22880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-top 22757 df-ntr 22883 |
| This theorem is referenced by: ntrf2 44086 |
| Copyright terms: Public domain | W3C validator |