Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrf Structured version   Visualization version   GIF version

Theorem ntrf 40821
Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = 𝐽
ntrrn.i 𝐼 = (int‘𝐽)
Assertion
Ref Expression
ntrf (𝐽 ∈ Top → 𝐼:𝒫 𝑋𝐽)

Proof of Theorem ntrf
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 vpwex 5243 . . . . . 6 𝒫 𝑠 ∈ V
21inex2 5186 . . . . 5 (𝐽 ∩ 𝒫 𝑠) ∈ V
32uniex 7447 . . . 4 (𝐽 ∩ 𝒫 𝑠) ∈ V
4 eqid 2798 . . . 4 (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠))
53, 4fnmpti 6463 . . 3 (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋
6 ntrrn.i . . . . 5 𝐼 = (int‘𝐽)
7 ntrrn.x . . . . . 6 𝑋 = 𝐽
87ntrfval 21629 . . . . 5 (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)))
96, 8syl5eq 2845 . . . 4 (𝐽 ∈ Top → 𝐼 = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)))
109fneq1d 6416 . . 3 (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋))
115, 10mpbiri 261 . 2 (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋)
127, 6ntrrn 40820 . 2 (𝐽 ∈ Top → ran 𝐼𝐽)
13 df-f 6328 . 2 (𝐼:𝒫 𝑋𝐽 ↔ (𝐼 Fn 𝒫 𝑋 ∧ ran 𝐼𝐽))
1411, 12, 13sylanbrc 586 1 (𝐽 ∈ Top → 𝐼:𝒫 𝑋𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800  cmpt 5110  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  Topctop 21498  intcnt 21622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-top 21499  df-ntr 21625
This theorem is referenced by:  ntrf2  40822
  Copyright terms: Public domain W3C validator