![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrf | Structured version Visualization version GIF version |
Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
Ref | Expression |
---|---|
ntrf | ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 5169 | . . . . . 6 ⊢ 𝒫 𝑠 ∈ V | |
2 | 1 | inex2 5113 | . . . . 5 ⊢ (𝐽 ∩ 𝒫 𝑠) ∈ V |
3 | 2 | uniex 7323 | . . . 4 ⊢ ∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
4 | eqid 2795 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) | |
5 | 3, 4 | fnmpti 6359 | . . 3 ⊢ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋 |
6 | ntrrn.i | . . . . 5 ⊢ 𝐼 = (int‘𝐽) | |
7 | ntrrn.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | ntrfval 21316 | . . . . 5 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
9 | 6, 8 | syl5eq 2843 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐼 = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
10 | 9 | fneq1d 6316 | . . 3 ⊢ (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)) |
11 | 5, 10 | mpbiri 259 | . 2 ⊢ (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋) |
12 | 7, 6 | ntrrn 39957 | . 2 ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
13 | df-f 6229 | . 2 ⊢ (𝐼:𝒫 𝑋⟶𝐽 ↔ (𝐼 Fn 𝒫 𝑋 ∧ ran 𝐼 ⊆ 𝐽)) | |
14 | 11, 12, 13 | sylanbrc 583 | 1 ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 ∩ cin 3858 ⊆ wss 3859 𝒫 cpw 4453 ∪ cuni 4745 ↦ cmpt 5041 ran crn 5444 Fn wfn 6220 ⟶wf 6221 ‘cfv 6225 Topctop 21185 intcnt 21309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-top 21186 df-ntr 21312 |
This theorem is referenced by: ntrf2 39959 |
Copyright terms: Public domain | W3C validator |