| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrf | Structured version Visualization version GIF version | ||
| Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
| ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
| Ref | Expression |
|---|---|
| ntrf | ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vpwex 5352 | . . . . . 6 ⊢ 𝒫 𝑠 ∈ V | |
| 2 | 1 | inex2 5293 | . . . . 5 ⊢ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 3 | 2 | uniex 7740 | . . . 4 ⊢ ∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 4 | eqid 2736 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) | |
| 5 | 3, 4 | fnmpti 6686 | . . 3 ⊢ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋 |
| 6 | ntrrn.i | . . . . 5 ⊢ 𝐼 = (int‘𝐽) | |
| 7 | ntrrn.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 8 | 7 | ntrfval 22967 | . . . . 5 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
| 9 | 6, 8 | eqtrid 2783 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐼 = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
| 10 | 9 | fneq1d 6636 | . . 3 ⊢ (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)) |
| 11 | 5, 10 | mpbiri 258 | . 2 ⊢ (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋) |
| 12 | 7, 6 | ntrrn 44113 | . 2 ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
| 13 | df-f 6540 | . 2 ⊢ (𝐼:𝒫 𝑋⟶𝐽 ↔ (𝐼 Fn 𝒫 𝑋 ∧ ran 𝐼 ⊆ 𝐽)) | |
| 14 | 11, 12, 13 | sylanbrc 583 | 1 ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4888 ↦ cmpt 5206 ran crn 5660 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 Topctop 22836 intcnt 22960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-top 22837 df-ntr 22963 |
| This theorem is referenced by: ntrf2 44115 |
| Copyright terms: Public domain | W3C validator |