Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrf Structured version   Visualization version   GIF version

Theorem ntrf 43189
Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = βˆͺ 𝐽
ntrrn.i 𝐼 = (intβ€˜π½)
Assertion
Ref Expression
ntrf (𝐽 ∈ Top β†’ 𝐼:𝒫 π‘‹βŸΆπ½)

Proof of Theorem ntrf
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 vpwex 5375 . . . . . 6 𝒫 𝑠 ∈ V
21inex2 5318 . . . . 5 (𝐽 ∩ 𝒫 𝑠) ∈ V
32uniex 7735 . . . 4 βˆͺ (𝐽 ∩ 𝒫 𝑠) ∈ V
4 eqid 2731 . . . 4 (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)) = (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠))
53, 4fnmpti 6693 . . 3 (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋
6 ntrrn.i . . . . 5 𝐼 = (intβ€˜π½)
7 ntrrn.x . . . . . 6 𝑋 = βˆͺ 𝐽
87ntrfval 22761 . . . . 5 (𝐽 ∈ Top β†’ (intβ€˜π½) = (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)))
96, 8eqtrid 2783 . . . 4 (𝐽 ∈ Top β†’ 𝐼 = (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)))
109fneq1d 6642 . . 3 (𝐽 ∈ Top β†’ (𝐼 Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋))
115, 10mpbiri 258 . 2 (𝐽 ∈ Top β†’ 𝐼 Fn 𝒫 𝑋)
127, 6ntrrn 43188 . 2 (𝐽 ∈ Top β†’ ran 𝐼 βŠ† 𝐽)
13 df-f 6547 . 2 (𝐼:𝒫 π‘‹βŸΆπ½ ↔ (𝐼 Fn 𝒫 𝑋 ∧ ran 𝐼 βŠ† 𝐽))
1411, 12, 13sylanbrc 582 1 (𝐽 ∈ Top β†’ 𝐼:𝒫 π‘‹βŸΆπ½)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105   ∩ cin 3947   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908   ↦ cmpt 5231  ran crn 5677   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  Topctop 22628  intcnt 22754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22629  df-ntr 22757
This theorem is referenced by:  ntrf2  43190
  Copyright terms: Public domain W3C validator