Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrf Structured version   Visualization version   GIF version

Theorem ntrf 44114
Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = 𝐽
ntrrn.i 𝐼 = (int‘𝐽)
Assertion
Ref Expression
ntrf (𝐽 ∈ Top → 𝐼:𝒫 𝑋𝐽)

Proof of Theorem ntrf
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 vpwex 5352 . . . . . 6 𝒫 𝑠 ∈ V
21inex2 5293 . . . . 5 (𝐽 ∩ 𝒫 𝑠) ∈ V
32uniex 7740 . . . 4 (𝐽 ∩ 𝒫 𝑠) ∈ V
4 eqid 2736 . . . 4 (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠))
53, 4fnmpti 6686 . . 3 (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋
6 ntrrn.i . . . . 5 𝐼 = (int‘𝐽)
7 ntrrn.x . . . . . 6 𝑋 = 𝐽
87ntrfval 22967 . . . . 5 (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)))
96, 8eqtrid 2783 . . . 4 (𝐽 ∈ Top → 𝐼 = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)))
109fneq1d 6636 . . 3 (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋))
115, 10mpbiri 258 . 2 (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋)
127, 6ntrrn 44113 . 2 (𝐽 ∈ Top → ran 𝐼𝐽)
13 df-f 6540 . 2 (𝐼:𝒫 𝑋𝐽 ↔ (𝐼 Fn 𝒫 𝑋 ∧ ran 𝐼𝐽))
1411, 12, 13sylanbrc 583 1 (𝐽 ∈ Top → 𝐼:𝒫 𝑋𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3930  wss 3931  𝒫 cpw 4580   cuni 4888  cmpt 5206  ran crn 5660   Fn wfn 6531  wf 6532  cfv 6536  Topctop 22836  intcnt 22960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-top 22837  df-ntr 22963
This theorem is referenced by:  ntrf2  44115
  Copyright terms: Public domain W3C validator