Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrf | Structured version Visualization version GIF version |
Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
Ref | Expression |
---|---|
ntrf | ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 5320 | . . . . . 6 ⊢ 𝒫 𝑠 ∈ V | |
2 | 1 | inex2 5262 | . . . . 5 ⊢ (𝐽 ∩ 𝒫 𝑠) ∈ V |
3 | 2 | uniex 7656 | . . . 4 ⊢ ∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
4 | eqid 2736 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) | |
5 | 3, 4 | fnmpti 6627 | . . 3 ⊢ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋 |
6 | ntrrn.i | . . . . 5 ⊢ 𝐼 = (int‘𝐽) | |
7 | ntrrn.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | ntrfval 22281 | . . . . 5 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
9 | 6, 8 | eqtrid 2788 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐼 = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
10 | 9 | fneq1d 6578 | . . 3 ⊢ (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)) |
11 | 5, 10 | mpbiri 257 | . 2 ⊢ (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋) |
12 | 7, 6 | ntrrn 42061 | . 2 ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
13 | df-f 6483 | . 2 ⊢ (𝐼:𝒫 𝑋⟶𝐽 ↔ (𝐼 Fn 𝒫 𝑋 ∧ ran 𝐼 ⊆ 𝐽)) | |
14 | 11, 12, 13 | sylanbrc 583 | 1 ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4547 ∪ cuni 4852 ↦ cmpt 5175 ran crn 5621 Fn wfn 6474 ⟶wf 6475 ‘cfv 6479 Topctop 22148 intcnt 22274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-top 22149 df-ntr 22277 |
This theorem is referenced by: ntrf2 42063 |
Copyright terms: Public domain | W3C validator |